純粋・応用数学・数学隣接分野(含むガロア理論)13at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)13 - 暇つぶし2ch783:132人目の素数さん
23/07/26 22:23:56.09 poSxbNhG.net
✕時枝戦略不成立
○濊拖反論不成立

784:132人目の素数さん
23/07/26 22:26:08.68 IHiRkqZG.net
>>717
貧弱な日本語だなあ

785:132人目の素数さん
23/07/26 22:54:45.23 y0E2t7gS.net
>>716
確率空間じゃないと言いたいの?
じゃ
「箱入り無数目の確率空間は以下から容易に解るよね」
とすればよい?
その程度の補完もできない耄碌爺さんは5ちゃんに向かないのでは?邪魔なので消えてくれると有難い

786:132人目の素数さん
23/07/26 23:41:03.78 AI85w86B.net
>>715
謎のプロ数学者さん
ありがとうございます
スレ主です
>疲れても相手をしたいんだろう
でしょうねw
というか、引っ込みがつかない
しかし、>>700の ">>699 ??????????"
などは、なかなか厳しいなかにも、生暖かいコメントでしょうかねw
お陰様で、大分煮詰まりました
そろそろ、大寄せですかね?w
丁寧に”面倒を見るよう”に、打ちますね

787:132人目の素数さん
23/07/26 23:41:50.15 AI85w86B.net
>>710
さて、本題にいきましょう
>> よって、一つの同値類における代表dの集合をDと書くと、D=Nだね
>一つの同値類に代表は一つ。複数あったら代表の意味が無いw
数学的には、代表の候補は複数ありますよ
どれを代表とするかは、その人のチョイスが普通
「類の任意の元をその類の代表元として選ぶことができる」です(下記)
但し、標準代表が存在する場合もある
URLリンク(ja.wikipedia.org)
同値類
各同値類の元を(しばしば暗黙に)選ぶと,切断(英語版)と呼ばれる単射が定義される.この切断を s で表せば,各同値類 c に対して [s(c)] = c である.元 s(c) は c の代表元 (representative) と呼ばれる.
切断を適切に取って類の任意の元をその類の代表元として選ぶことができる.
>言った通り、記事に書かれた通りの戦略で当たらないことを示して下さい。それ以外は却下。
示していますよ、なんと言おうがw
”それでも地球はうごく” by ガリレオ ですよ

788:132人目の素数さん
23/07/26 23:42:22.88 AI85w86B.net
>>711
>>数学的に”期待値”(平均値)は、無限大に発散しているゆえ
>>”決定番号d(期待値) < dmax”は、不可ということ
>開封した結果、決定番号d< dmaxだったらどうすんの?「有り得ないはず」としたことが実際には普通に有り得ちゃうんだけど?
それは、既に説明した通りです
「決定番号d< dmax」の確率は0ですが、ありえます
例えば、宝くじが1枚あり、当選番号は未発表とします。当りは1等1枚のみ。当選確率は、ほぼ0ですが、1等当選もあり
同様に、くじ発行枚数可算無限で、当りは1等1枚のみ。当選確率は、完全に0ですが、1等当選もありうる

789:132人目の素数さん
23/07/27 00:07:33.94 R4WinaKo.net
>>721
>示していますよ、なんと言おうがw
嘘はダメ
記事に無い確率空間を持ち出してる時点で却下

790:132人目の素数さん
23/07/27 00:11:01.63 R4WinaKo.net
>>722
100列について、列nの決定番号がnだったとします。
100列のいずれかをランダム選択したとき、決定番号100の列を選ぶ確率は?

791:132人目の素数さん
23/07/27 00:19:53.09 R4WinaKo.net
おサルの似非地動説によると未開封列の決定番号は開封済99列の決定番号よりも確実に大きいとのこと
ガリレオも真っ青ですねw

792:132人目の素数さん
23/07/27 00:24:26.89 R4WinaKo.net
「未開封列の決定番号は開封済99列の決定番号よりも確実に大きい」

どんなオカルトですか?透視能力ですか?
透視能力を認めるなら初めから数学セミナーの記事になりませんねーw

793:132人目の素数さん
23/07/27 02:40:31.80 t8ede/Cg.net
統計学では30万分の1を0とみなす話は然て置き
実数の集合から在る実数1つを抽選する確率は0では在るが



794:の0は空集合Φにあたる基数#Φ=0なる零元0ではなく零元を含む無限小元総称を意味しての0であり 更に当該抽選の話で言えば無限小元0の内の非零無限小元となる よって当該抽選当選は有り得る。此の事実を伏せて「有り得ない」と言い張る濊拖の主張は 持論を不当不正に論戦見せ掛け上勝利雰囲気へ話を運び閲覧者各位を濊拖勝利を錯覚させる為の虚偽である。



795:132人目の素数さん
23/07/27 03:15:38.07 t8ede/Cg.net
> 相当アホやな
幾ら便食虫のお前と言えども数学板に書き込む動物なら数学板に書き込む動物として、どうアホなのか厳正細密精確に詳説しろ
然も無くば単なるハッタリを言っただけに過ぎなくなる
> こいつ、だれか知らないが、
> ああ、蕎麦屋のおっさんか?
> すまん、すまん
気付いたなら「知らないが」アピールは取り下げるのが普通だが其処は流石の便食虫、普通の事が出来ない
> 分からなかったよwww
人を見分ける認識能力の低さが無比のお前だもんな
冗談抜きでお前より人を見分けられない投稿者を
数学板でも他板でも見た事が無い
流石は「でも無限小数が無い世界なら0.99999…≠1だよね?」発言の無能未満のマイナス能の便食虫だな
無限小数が無い世界じゃそもそも0.99999…も存在しないと考えるか又は1.00000…及び0.99999…が1の別表現として存在すると云う意味で無限小数表記ながら無限小数ではない、と考えるべきだろ
どこをどうやったって無限小数が存在しない世界設定だからと云う理由なんかで0.99999…≠1なんかに成りはしない事など中学生どころか小学生でも分かるぞ濊拖
0.99999…は実数でも超実数でも超実数の一般拡張の準超実数でも微細化方向最終拡張の超現実数でも1だぞ
ハッケンブッシュゲームのルール上で初めて0.99999…≠1に成るが勿論ハッケンブッシュゲームは最早、数の元から成る体系ではないゲームが元の体系だ
何かと言うと選択公理だー、定義次第だー、それが21と何でもアリ論を披露するが駄目なもんはどう定義したって駄目な事が分からないのは相変わらずだな便食虫
プロの数学者とやらは何で此んな便食虫の擁護をしてるんだ?食糞の同志なのか?

796:132人目の素数さん
23/07/27 03:35:50.15 t8ede/Cg.net
ん?空集合∅代替文字が大文字Φに成ってやがる
小文字は小文字で一筆書きφで記される機種が増えてやがる、面倒だな

797:132人目の素数さん
23/07/27 05:13:39.90 t8ede/Cg.net
>>653
> >高木くんのは突っ込みどころ満載
> 全然違う、完全に正しい論文に対して一人で発狂しているだけ

(発狂は相手じゃなくてお前自身だろ…)
はぁ?一人?tai氏を除けば>>651の他に俺や>>619も居るだろ
統合を失調して統合判断し難いからって十把一絡げで楽に統合判断しようとすんじゃねぇよ

798:132人目の素数さん
23/07/27 05:15:13.86 t8ede/Cg.net
あら?高木のスレじゃなくて濊拖のスレだった

799:132人目の素数さん
23/07/27 10:43:16.42 UxY8f0SS.net
スレ主です
答案は、昨夜作ってあったが、アクセス規制にひっかかったのです
さて
>>712
>>連続さえ仮定しない関数値であるから、明らかに馬鹿げた話である
>どこがどう馬鹿げてるのか詳しくお願いします
説明します。>>709の通りで
区間[a,b]の解析関数の値を箱に入れます
可算無限列 x1,x2,・・に対する
関数値f(x1),F2(x2),・・
解析関数なので、区間[a,b]の中のある値c(


800:a<c<b)をとって 級数展開できます f(x)=a0+a1(x-c)+a2(x-c)^2+a3(x-c)^3+・・ 箱には、上記関数値を入れ、箱の外に各 x1,x2,・・ の値を表記します こうすると、ある一つの箱(i番目でxiの関数値f(xi))を除いて箱を開けます 一つのxiとf(xi)のペアを除いて、級数展開の係数を決めるための連立方程式が可算無限個得られます 求める未知数の級数展開の係数は可算無限で、つまり無限次元の連立方程式を解けば、級数展開の係数が決まり (無限次元の連立方程式が、実際に解けるかは別として、原理的には解ける) f(x)=a0+a1(x-c)+a2(x-c)^2+a3(x-c)^3+・・が決まります 箱の外のxiから、箱の中のf(xi)が得られます。箱を開ける必要はありません つづく



801:132人目の素数さん
23/07/27 10:43:41.13 R4WinaKo.net
おサルさすがに似非地動説のおかしさに気づいたか
しょせんサル知恵やなw

802:132人目の素数さん
23/07/27 10:44:21.35 UxY8f0SS.net
つづき
さて ここで、解析関数でなければ、級数展開はできません
というか、解析関数以外では、区間[a,b]内の可算無限個の関数値が分かっても関数は決まらないので、xiからf(xi)を得ることは原理的には不可です
また、箱の外に各 x1,x2,・・ の値を表記しておかなければ、i番目の箱の中の値は、例え解析関数であっても箱の中の数は決まらない(つまり当てられない)
よって、解析関数でもなく、箱の外に各 x1,x2,・・ たちの値の表記がない
「箱入り無数目」は、全くの絵空事です!
(参考)
URLリンク(ja.wikipedia.org)
解析関数(かいせきかんすう、英: analytic function)とは、定義域の各点において解析的(収束冪級数で書ける)な関数のことである。場合により多少異なった意味でも用いられる。複素変数 z の複素数値関数 f(z) が1点 z = c で解析的 (analytic) であるとは、c の近傍で z - c の冪級数で表されることを云う。
以上

803:132人目の素数さん
23/07/27 10:45:15.45 UxY8f0SS.net
>>713
>>明示した確率空間は、時枝「箱入り無数目」の確率空間として示した>>701-702 & >>707
>>よって、”使ってないなら”が、偽です
>はい大間違い。
>箱入り無数目の確率空間は以下。
>「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
ええ、そう主張するのは自由ですよ
政治ならね
数学でも、主張は自由ですよ
でも、数学では証明が必要ですね
”箱入り無数目の確率空間は以下。
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」”
うん? 確率空間の書式に則っていませんね?w
(参考)>>707より
URLリンク(www.math.kobe-u.ac.jp)
樋口保成 神戸大
講義情報
URLリンク(www.math.kobe-u.ac.jp)
1.1. 確率空間
1.1.4 確率と確率空間
確率空間 (Ω, F, P)
以上

804:132人目の素数さん
23/07/27 10:50:23.67 R4WinaKo.net
>>734
>解析関数以外では、区間[a,b]内の可算無限個の関数値が分かっても関数は決まらないので
関数は決まってるよ
決まってなければ箱に関数値を入れられない
はい、サル知恵

805:132人目の素数さん
23/07/27 10:52:38.48 R4WinaKo.net
>>735
>でも、数学では証明が必要ですね
違う。
おまえが
>箱入り無数目の確率空間は以下。
>「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
であるとしても当てられないことを証明しなければならない。
証明できないなら「勝つ戦略は存在する」を否定できない。

806:132人目の素数さん
23/07/27 10:54:17.25 R4WinaKo.net
おサルさん早く>>724に答えてくれない?

807:132人目の素数さん
23/07/27 11:18:02.51 UxY8f0SS.net
>>719
>確率空間じゃないと言いたいの?
>じゃ
>「箱入り無数目の確率空間は以下から容易に解るよね」
>とすればよい?
>その程度の補完もできない耄碌爺さんは5ちゃんに向かないのでは?邪魔なので消えてくれると有難い
ふふふ
スレ主です
某N大O研のゼミ、黒板の前の学生に、教授が「確率空間は?」と聞かれて
学生が
”箱入り無数目の確率空間は以下。
 「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. >>s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない」”
と答えたら?
おそらく、雷が落ちる。「確率空間が分かってないからと、誤魔化すな!」でしょうねw(>>735ご参照)
こんな話があったそうな
むかし、後に大学教授になった人が、院試の口頭試問で、”アスコリ=アルツェラの定理の証明は?”
ときかれ、「自明なので証明不要」と答えて、院試落ちしたという
証明を答えていれば、ポイントゲットになるので
答えられないからの苦し紛れが、「自明なので証明不要」かも
でも、これは院試の口頭試問では悪手で、脂汗流しながらでも、証明にトライしたら、10点中1点くらいお情け点がありそうだ
し�


808:ゥし「自明なので証明不要」は、明らかに白紙答案で0点でしょうw 上記に同じだな https://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%B9%E3%82%B3%E3%83%AA%EF%BC%9D%E3%82%A2%E3%83%AB%E3%83%84%E3%82%A7%E3%83%A9%E3%81%AE%E5%AE%9A%E7%90%86 アスコリ=アルツェラの定理 証明 証明は対角線論法に本質的に基づくものである。最も簡単な場合は、次の有界閉区間上の実数値函数の場合である:



809:132人目の素数さん
23/07/27 11:23:03.28 R4WinaKo.net
おサルさん早く>>724に答えてくれない?
サルだから分からない?

810:132人目の素数さん
23/07/27 11:38:22.00 UxY8f0SS.net
>>738
>おサルさん早く>>724に答えてくれない?
 >>724
”100列について、列nの決定番号がnだったとします。
 100列のいずれかをランダム選択したとき、決定番号100の列を選ぶ確率は?”
かな
 列1の決定番号が1、列2の決定番号が2、・・、列100の決定番号が100
 ですか?
 決定番号100を選べば、当り?
 ならば、最後にある列100を選べば良い。それで、決定番号が100になる
 情報が公開されているから、当りの確率は1ですよ

811:132人目の素数さん
23/07/27 11:41:46.54 R4WinaKo.net
あらら
問題文すら読めないおサルさんでした
やはりサルに数学は無理ですねー

812:132人目の素数さん
23/07/27 11:43:06.57 UxY8f0SS.net
>>728
>> こいつ、だれか知らないが、
>> ああ、蕎麦屋のおっさんか?
>> すまん、すまん
>気付いたなら「知らないが」アピールは取り下げるのが普通だが其処は流石の便食虫、普通の事が出来ない
すまん、すまん
あんた、以前は”蕎麦”屋の固定ハンドルをつけていたのに
それを外すから、見分けるのが難しいのよ
まあ、お元気そうでなにより
今後とも
このスレをよろしくね

813:132人目の素数さん
23/07/27 12:00:15.06 UxY8f0SS.net
>>716
>>>箱入り無数目の確率空間は以下。
>>>「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. >>s^kの決定番号が他の列の決定番号どれ>>よりも大きい確率は1/100に過ぎない.
>難しい日本語だなあ
通りすがりの人か
まあ、聞いてください
『「箱入り無数目の確率空間は以下から容易に解るよね」
とすればよい?
その程度の補完もできない耄碌爺さんは5ちゃんに向かないのでは?邪魔なので消えてくれると有難い』
とゴマカス >>719 ID:y0E2t7gS さん
この人は、数学科出身らしい
どの大学で落ちこぼれたのかは知らないが
「箱入り無数目」は、間違っていると言われて、理解できないらしい
なんだかね
いうに事欠いて、”その程度の補完もできない耄碌爺さん”とは! なんという言い草!
正直、数学科出身を自称する人が、よくぞ言ってくれたと思います
「箱入り無数目」に、汚染された人、可哀そうに
一般人にも、何人もいそうですね
やっぱり、『「箱入り無数目」外伝』が必要かも
『真「箱入り無数目」伝』かも知れませんがw

814:132人目の素数さん
23/07/27 12:11:51.14 R4WinaKo.net
>>724に正答できないようじゃとてもじゃないが箱入り無数目は分からないよ
まあおサルさんには無理なので諦めましょう

815:132人目の素数さん
23/07/27 12:43:41.68 t8ede/Cg.net
>>384
だれが蕎麦“屋”だコラ
蕎麦屋の粋蕎じゃなくて十割蕎麦焼酎の粋蕎だバカ垂れ
流石は風説の流布行為指摘に『ここは5ちゃん玉石混淆なレスが飛び交う何でもアリ
風説の流布クソくらえ』発言の罪悪意識欠如動物
日頃の大量のコピペ誤引用と誤解説に何の悪びれも無い

816:132人目の素数さん
23/07/27 12:53:47.67 UxY8f0SS.net
>>746
スレ主です
ごめんごめん

”十割蕎麦焼酎の粋蕎”ね
説明ありがとう

ともかく
ご健勝でなによりです

817:132人目の素数さん
23/07/27 12:57:13.03 UxY8f0SS.net
>>745
まあ、がんばってくれw

>>>724に正答できないようじゃとてもじゃないが箱入り無数目は分からないよ

やっぱ、プロ数学者の
「エレガントな解説」(「箱入り無数目」不成立の)が
必要ってことなんでしょうねw

818:132人目の素数さん
23/07/27 12:57:37.84 t8ede/Cg.net
URLリンク(www.hotpepper.jp)
URLリンク(tsnet-web.jp)

濊拖も高木が自意識が及ぼす曲解常習者

819:132人目の素数さん
23/07/27 13:05:33.12 R4WinaKo.net
>>748
正答できないのはサルくらいだよ
実際不成立だーと吠えてるのってサル一匹だよね

820:132人目の素数さん
23/07/27 13:44:01.94 t8ede/Cg.net
ID:IHiRkqZGもじゃね?

>>718
貧弱と感じるのは高みの見物感覚�


821:フ濊拖擁護の心に生じる高くくり意識に依る。 実際、何度も訂正し続けつつも持論を掲げ続ける『ムービングゴールポスト弁術』を続けている濊拖を支持し続けられているだろ? 恥を自覚出来なくなってんだよ。濊拖を擁護して居られる事が矢場い事である認識が無いから『貧弱』と思ってられるんだ。 中立でも公平な見方どころか中庸な見方できない場合、それに該当している自覚は有るか? 訂正続き、と云う事は反論不成立で在り続けている事が分かってる?暖かい目で濊拖と猿石の口論を眺めている積もりが 生暖かい目に成ってる事を自覚しているか?



822:132人目の素数さん
23/07/27 14:10:17.97 R4WinaKo.net
>>751
>ID:IHiRkqZGもじゃね?
耄碌爺さんはそもそも興味無いと言ってた。
興味無いなら黙っとけばいいのにw
誰からも相手されなくて話し相手でも欲しいのか何故か口出ししてくるんだよなあw

823:132人目の素数さん
23/07/27 16:02:47.29 UxY8f0SS.net
>>751-752
>ID:IHiRkqZGもじゃね?
>耄碌爺さんはそもそも興味無いと言ってた。
スレ主です
そこ同意
多分、ID:IHiRkqZG氏は
時枝云々ではなく、「箱入り無数目」天動説の詳細には興味がないだけで
「”天動説”ダメ!」は、彼は彼なりの意見があると思うよ
そして、天動説 vs 地動説のへぼ碁を観戦して、楽しんでいるのだろう
プロを甘く見ない方良いと思うが
ID:R4WinaKo(>>752)氏のレベル(初級)だと、プロの凄さ分からんでしょw
レベル低い(初級)と、アマの初段もプロの初段も区別がつかないw
ID:R4WinaKo(>>752)氏は、アマの初段より、2~3子弱そうだね

824:132人目の素数さん
23/07/27 16:50:49.85 R4WinaKo.net
>>753
>多分、ID:IHiRkqZG氏は
>時枝云々ではなく、「箱入り無数目」天動説の詳細には興味がないだけで
>「”天動説”ダメ!」は、彼は彼なりの意見があると思うよ
嘘はダメ
成立か不成立か分からないと言ってた
サルは嘘つく癖あるね サイコパスか?

825:132人目の素数さん
23/07/27 18:02:38.28 R4WinaKo.net
しかし超簡単サービス問題>>724に正答できないとはね
バカだとは思ってたがここまでとは
そりゃ箱入り無数目分かるわけ無いわな

826:132人目の素数さん
23/07/27 18:38:13.33 UxY8f0SS.net
>>751
>暖かい目で濊拖と猿石の口論を眺めている積もりが

スレ主です
重箱の隅で恐縮だが
いまいる ID:R4WinaKo氏 >>755とかは、猿石そのものではない
猿石より以前から居る人で、「箱入り無数目」を持ち込んだ人だろう

猿石>>5そのものは、「”天動説”ダメ!」を悟って撤退した
>>456 より
 "突然だがここを去ることにする
  略
 数学書は全て焼き払う ゴミだからだ
 さらば、クソ野郎ども"
 だな)

827:132人目の素数さん
23/07/27 20:31:01.34 R4WinaKo.net
>>756
嘘はダメ
彼は一言も不成立と言ったことは無い
やはりおサルはサイコパスだな

828:132人目の素数さん
23/07/28 07:44:11.82 hm4d+4X6.net
>>757
>彼は一言も不成立と言ったことは無い
ああ、そうだったね
1)>>756 "猿石>>5そのものは、「”天動説”ダメ!」を悟って"のところは
 私の推理です
 かれは、正確に引用すると、>>456 より
 ”一番の理由は数学者であるOSWTKOに幻滅したから
 数学は人を賢くしない むしろ卑しい畜生にする
 それがわかったから
 もはや数学のようなクソには何の興味もない
 数学書は全て焼き払う ゴミだからだ”
 だが、完全に破れかぶれの捨て台詞で
 格好付けだけだな
2)”OSWTKOに幻滅した”は、思うに だれかがだれかを”耄碌爺さん”と宣う理由と同じだろう
 つまり、「箱入り無数目」に賛同しないこと
 そして、思うに猿石氏は、OSWTKO情報をツイッター友達から教えて貰ったというから
 「箱入り無数目」の情報も教えて貰ったんだろう
 「”天動説”ダメ!」�


829:チてね 以上が私の推理です あなたにも、良いツイッター友達が居ればよかったろうにねw



830:132人目の素数さん
23/07/28 07:57:42.08 zikikevF.net
>>758
>>724に正答できないバカが何言っても無駄
自分の推理を信じて疑わないのは基地外
バカで且つ基地外とかオワッテル

831:132人目の素数さん
23/07/28 08:19:43.00 PtxszjtH.net
>>759
コヨーテの咆哮の方が可愛げがある

832:132人目の素数さん
23/07/28 08:29:36.67 zikikevF.net
>>760
代わりに答えてあげたら?>>724
君もバカかい?

833:132人目の素数さん
23/07/28 08:50:40.47 PtxszjtH.net
>>761
馬鹿貝の鼻提灯の方が可愛げがある

834:132人目の素数さん
23/07/28 08:56:10.51 zikikevF.net
>>762
おバカ仲間の方でしたか。失礼しました。

835:132人目の素数さん
23/07/28 08:59:08.52 PtxszjtH.net
少なくともお前と同類のバカではないよ

836:132人目の素数さん
23/07/28 09:04:24.45 zikikevF.net
>>764
へえ、バカじゃないんですか
じゃあ答えたられますよね?>>724

837:132人目の素数さん
23/07/28 09:35:31.59 PtxszjtH.net
>>765
日本語が分からないの?
それとも条件付きの命題の否定形の作り方が
分からないほどのバカ?

838:132人目の素数さん
23/07/28 09:58:28.39 zikikevF.net
>>766
答えられないからってそんな屁理屈並べんでもw
ええやん、素直に分かりませんって言えば
分からないのは恥じゃないよ 分からないのに分かってる風を装うことが恥

839:132人目の素数さん
23/07/28 10:20:57.91 GoaFG8py.net
>>767
こらこら
スレ主です
早く、自分のバカさ加減を悟るように
よろしくお願いしますよ

840:132人目の素数さん
23/07/28 10:42:50.47 PtxszjtH.net
>>767
何についてわかっているかわかっていないのかを
問いかけているのが不明確なままであれば
いつまでもその問いを続けられるということは
分かっているようだ

841:132人目の素数さん
23/07/28 10:42:54.35 zikikevF.net
>>768
そういう台詞は>>724に正答してから吐いてね

842:132人目の素数さん
23/07/28 10:44:16.67 zikikevF.net
>>769
だからそういう屁理屈はいいってw
素直に分かりませんと言いなさいw

843:132人目の素数さん
23/07/28 10:45:19.96 PtxszjtH.net
>>771
何が分からないと言ってほしいの?

844:132人目の素数さん
23/07/28 10:46:59.99 zikikevF.net
>>724はそんな禅問答のような問いじゃないぞ?
はっきり答えが出る、しかも極めて初等的かつ簡単な問題だ
いわば基礎学力が備わっているか見る問題だ
屁理屈や禅問答はいいってw

845:132人目の素数さん
23/07/28 10:48:02.94 zikikevF.net
>>772
>>724に答えるか、分かりませんと言うか、どっちかにしてw
分からないのに上から目線されても困りますw

846:132人目の素数さん
23/07/28 11:10:29.02 zikikevF.net
あらら、屁理屈並べて逃げちゃったw
そういうレベルの方を相手してたのかorz

847:132人目の素数さん
23/07/28 11:19:19.37 GoaFG8py.net
>>732
>求める未知数の級数展開の係数は可算無限で、つまり無限次元の連立方程式を解けば、級数展開の係数が決まり
>(無限次元の連立方程式が、実際に解けるかは別として、原理的には解ける)

全くの蛇足だが、下記のPolynomial interpolationのn次元→無限次元 にできる
つまり
f(x)=a0+a1(x-c)+a2(x-c)^2+a3(x-c)^3+・・ で
x1,x2,・・,xi-2,xi-1,xi,xi+1,xi+2,・・として
xi=c とする、f(c)の値が未知
xiの前後のxi-1,xi+1の関数値f(x-1),f(x+1)を使って1次式で補間できる
xiの前後のxi-2,xi+2の関数値f(x-2),f(x+2)を使ってより高次の3次式で補間できる
これを、可算無限回やると
級数展開を全部決めることができて、解析関数による補間になる
f(x)が解析関数という仮定が不成立なら、未知のf(c)が的中できるかどうか不明ってことです

つづく

848:132人目の素数さん
23/07/28 11:19:47.43 GoaFG8py.net
つづき

(参考)
URLリンク(ja.wikipedia.org)
内挿(ないそう、英: interpolation)や補間(ほかん)とは、ある既知の数値データ列を基にして、そのデータ列の各区間の範囲内を埋める数値を求めること、またはそのような関数を与えること。またその手法を内挿法(英: interpolation method)や補間法という。対義語は外挿や補外。

概要
内挿するためには、各区間の範囲内で成り立つと期待される関数と境界での振舞い(境界条件)を決めることが必要である。
最も一般的で容易に適用できるものは、一次関数(直線)による内挿(直線内挿)である。
内挿法の選択
線形補間や多項式補間が好まれて適用されるのは、単にアルゴリズムのソフトウェアへの実装が容易で計算機負荷が少ないというだけでなく、多くの物理現象を表す関数がテイラー展開可能であり、その高次の項が無視できるほど小さいと仮定できるからである。
そうでない場合は、適した内挿法を選択する必要がある。

URLリンク(en.wikipedia.org)
Polynomial interpolation

849:132人目の素数さん
23/07/28 11:30:45.57 GoaFG8py.net
>>775
スレ主です
精一杯がんばりなよ

でも、あんた勝てないよ
「”天動説”ダメ!」は、ほぼ自明の理だから

850:132人目の素数さん
23/07/28 11:50:12.32 GoaFG8py.net
>>775
スレ主です
あんたが言っているのは

「ほら、太陽が東から出て西に沈む。だから天動説」
「ほら、月が東から出て西に沈む。だから天動説が正しい」

って、表面に見えるところだけ、必死に強調しているけど
もっと、本質をみないと行けないんじゃないの?

天動説では、説明できないところ、沢山あるよ

851:132人目の素数さん
23/07/28 12:11:13.56 zikikevF.net
>>778 779
>>724に正答できないバカが言っても説得力ゼロですな

852:132人目の素数さん
23/07/28 12:12:58.79 zikikevF.net
>>776
>f(x)が解析関数という仮定が不成立なら、未知のf(c)が的中できるかどうか不明ってことです
cを固定したらダメ
君やはりぜんぜん分かってないね

853:132人目の素数さん
23/07/28 12:14:41.01 zikikevF.net
>>776
「どの箱を閉じたまま残すかはあなたが決めうる.」
君やはり日本語読めないようだね
数学以前だね

854:132人目の素数さん
23/07/28 12:47:17.91 zikikevF.net
>>776
だから言ってるじゃん
>>724に正答できないようじゃ箱入り無数目なんて絶対無理だと
箱入り無数目を理解したかったらまずは>>724に正答できるだけの基礎学力が必要

855:132人目の素数さん
23/07/28 12:58:43.64 jIwSEVdp.net
>>783
724に答えよというご注文だが
>>100列について、列nの決定番号がnだったとします。
>>100列のいずれかをランダム選択したとき、決定番号100の列を選ぶ確率は?
これだけでは「100列」が何であるかが不明

856:132人目の素数さん
23/07/28 13:05:32.14 zikikevF.net
何が欲しいの?
箱入り無数目の文脈で言ってるんだからもちろんR^Nの元だよ?

857:132人目の素数さん
23/07/28 13:35:55.99 jIwSEVdp.net
>>785

>>箱入り無数目の文脈で言ってるんだから

こればっかりなので訳が分からないが
R-Nというのは$\mathbb{R}^{\mathbb{N}}$のこと?
念のため

858:132人目の素数さん
23/07/28 13:38:00.84 zikikevF.net
R^Nとは実数列全体の集合
100列とはその集合の100個の元

859:132人目の素数さん
23/07/28 13:42:36.42 zikikevF.net
そのレベルから分からないんじゃ決定番号なんてなんのことやらと思うだろうが、
任意の実数列が属性として持つ自然数とでも思ってくれ
つまりある φ:R^N→N が一つ存在している前提

860:132人目の素数さん
23/07/28 13:45:57.90 zikikevF.net
そして>>724の設定では
φ(列n)=n for n∈{1,2,...,100}

861:132人目の素数さん
23/07/28 13:59:25.85 jIwSEVdp.net
>>787
>>任意の実数列が属性として持つ自然数とでも思ってくれ
>>つまりある φ:R^N→N が一つ存在している前提

>>φ(列n)=n for n∈{1,2,...,100}

こういう書き方では写像φを1つ決めたとき
nの逆像の要素は一意には決まらないので
その一つを「列n」と呼ぶのはいかがなものか。

862:132人目の素数さん
23/07/28 14:34:25.43 zikikevF.net
列1の決定番号は1,列2の決定番号は2,...,列nの決定番号はn,...,列100の決定番号は100
これで理解できる?

863:132人目の素数さん
23/07/28 14:36:03.67 zikikevF.net
逆像なんて関係無いよ?
列1,列2,・・・,列100が与えられてる前提だよ?
なんか勘違いしてない?

864:132人目の素数さん
23/07/28 15:53:46.37 GoaFG8py.net
>>792
>逆像なんて関係無いよ?

横レスすまん
逆像を問題にしているのは、下記の”関数の可測性”を問題にしているってことだろう
下記 可測関数 「その原像が可測であることを言う」だな
関数の可測性から、「確率測度が決められるかどうか」というスジじゃないかな
(しらんけど(私も詳しくないので、外しているかもだが))

(参考)
URLリンク(ja.wikipedia.org)
可測関数
測度論の分野における可測関数(かそくかんすう、英: measurable function)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。
この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には
f: (R,L)→ (R,B) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで
L はルベーグ可測集合全体の成す σ-代数であり、
B は R 上のボレル集合族である)。

865:132人目の素数さん
23/07/28 16:54:34.47 zikikevF.net
>>793
>(しらんけど(私も詳しくないので、外しているかもだが))
はい、見事に外してます

866:132人目の素数さん
23/07/28 18:26:30.92 GoaFG8py.net
>>794 (なくよウグイス平安京だっけw)

>>(しらんけど(私も詳しくないので、外しているかもだが))
>はい、見事に外してます

某N大O研のゼミでは、それでは答えになってないのでは? (数学の議論になってないぞw)
まあ、あんたは必死に、確率空間についても、同様に”逃げで”打っているけどw

確率空間、関数の可測性、測度論、確率測度、その全てに弱そうだねw
もし某ゼミなら、次々質問のアラシで、黒板ハリツケかもな

いまの関数の可測性の問題視は、>>524に引用した確率論の専門家さんも同様だね
プロの目の付け所かもね

「ボレル代数が・・」「逆像どうなっているかぁ~」と言われても
私も即答できるレベルでないのが、残念だがww
しかし、あんたより私が、ましかもよ

867:132人目の素数さん
23/07/28 19:31:00.50 zikikevF.net
>>795
>まあ、あんたは必死に、確率空間についても、同様に”逃げで”打っているけどw
逃げとは?

>いまの関数の可測性の問題視は、>>524に引用した確率論の専門家さんも同様だね
え?
確率論の専門家が何をどう勘違いしてるかさんざん解説したのに未だ分かってなかったの?
馬鹿?

868:132人目の素数さん
23/07/28 19:44:40.34 zikikevF.net
>>795
>いまの関数の可測性の問題視は、>>524に引用した確率論の専門家さんも同様だね
>プロの目の付け所かもね
そもそも>>724はφの可測性なんてまったく関係無い
実際耄碌爺さんはそこにまったく触れてない
おサルが言い出したことだ ⇒ >逆像を問題にしているのは、下記の”関数の可測性”を問題にしているってことだろう

>プロの目の付け所かもね
え?
おサルは自分がプロだと言いたいの?暑さで発狂した?

869:132人目の素数さん
23/07/28 19:50:46.69 zikikevF.net
>>795
>某N大O研のゼミでは、それでは答えになってないのでは? (数学の議論になってないぞw)
議論もクソもないw
>>724にφの可測性なんてまったく関係無い
そこ分からないんじゃ箱入り無数目の理解は諦めた方がよい

870:132人目の素数さん
23/07/28 20:47:15.31 PtxszjtH.net
>>792

>>つまりある φ:R^N→N が一つ存在している前提

前提がこうであるということならそれでも良いが

>>逆像なんて関係無いよ?
>>列1,列2,・・・,列100が与えられてる前提だよ?

φが与えられていることと、各nに対して
φによるその逆像の要素の一つが与えられていることは
前提の与え方としては同等ではなかろう

871:132人目の素数さん
23/07/28 21:08:56.95 zikikevF.net
ですか?>>799
逆像なんて関係無いと言ってるのが分からん?
列1,...,列100 が与えられている。
各列の決定番号が与えられている。列nの決定番号=n

解けないからって難癖付けるのはやめてくれませんか?あなたはチンピラですか?

872:132人目の素数さん
23/07/28 21:37:00.28 zikikevF.net
もう難癖爺さんは答えなくていい
ただ消えてくれればそれでいい

できればこの世からも消えたらいいと思う
生きてても社会の迷惑でしかないだろうから

873:132人目の素数さん
23/07/28 21:58:05.07 fl3GpQuc.net
ありえへん!(悲鳴)

874:132人目の素数さん
23/07/28 21:58:35.15 hm4d+4X6.net
>>800-801
ご苦労さま
スレ主です

それが「逃げ」(>>795-796)ってことだよ
つまり、”逆像”という秘孔を突かれて、喚き狂う哀れ

URLリンク(dic.nicovideo.jp)
中国より伝わる恐るべき暗殺拳があると聞くその名を北斗神拳…
肉体の経絡秘孔に衝撃を与え内部の破壊を極意とした一撃必殺の拳法!
真・北斗無双 伝説編第1話「Z(ジード)来襲」での長老による解説
簡単に言えば、東洋医学で気や体液、血(けつ)の流れる道筋である経絡(けいらく)の要所、鍼灸や指圧で言うところのツボ(経穴、秘孔)を強烈に突くことで、内部から破裂させる拳法である。

875:132人目の素数さん
23/07/28 22:00:01.17 fl3GpQuc.net
えらいこと言うてはりますわ〰

876:132人目の素数さん
23/07/28 22:02:22.32 fl3GpQuc.net
数学ちがいますやん
場外乱闘ですやん・・

877:132人目の素数さん
23/07/28 22:03:08.76 fl3GpQuc.net
お〰こわ・・

878:132人目の素数さん
23/07/28 22:09:36.66 hm4d+4X6.net
>>800-801
ご苦労さま
スレ主です

哀れよのう
数学とは、1ミリのギャップも許されない

重箱の隅でも、徹底的に突かれるものだ
それを、難癖というなかれw

急所・痛いところを突かれて
喚く姿は、哀れなり

まあ、逆像は痛いところだよね
あんた、あんまし逆像が(逆像もw)「分かってない」と見た

879:132人目の素数さん
23/07/28 22:18:34.64 zikikevF.net
>>803
>つまり、”逆像”という秘孔を突かれて、喚き狂う哀れ
なんで逆像が秘孔なんだよw
このバカ何にも分かってねえw

880:132人目の素数さん
23/07/28 22:22:40.44 zikikevF.net
>>807
何も分かってないサルが狂喜乱舞してて草

>数学とは、1ミリのギャップも許されない
超サービス問題>>724も正答できないサルが何いってんだがw

>まあ、逆像は痛いところだよね
「逆像なんて関係ない」 ← 日本語分からない? サルだから分からないよね?w

881:132人目の素数さん
23/07/28 22:30:15.88 zikikevF.net
>>807
マジで言ってる?
おサルさんは>>724解くのに逆像なんて何の関係も無いこと、本当に分からないの?
それヤバイよw

ちなみにnのφによる逆像って {x∈R^N|φ(x)=n} のことなんだけど分かって言ってる? 分かって言ってないだろw
サル、訳も分からず狂喜乱舞w

882:132人目の素数さん
23/07/28 22:36:59.65 zikikevF.net
いやああ
このスレおサルさんの本性見れて楽しいわ
なに一つ分かってないのによく狂喜乱舞できるなw
やっぱ畜生は人間様とは違うな

883:132人目の素数さん
23/07/28 22:42:57.74 zikikevF.net
>>801
難癖爺さんにも一つだけ存在価値あったね
サルの本性を見せてくれたことw
めっさおもろかったよ ありがとう

884:132人目の素数さん
23/07/28 23:23:13.89 PtxszjtH.net
>>812
φ(列1)=1と書いたら
ふつうは列1はφによって1に写像されるわけだから
列1はφによる1の逆像の要素であることになるのではないだろうか

885:132人目の素数さん
23/07/28 23:40:00.79 zikikevF.net
>>813
逆像の要素であることをぜんぜん否定してないんですけど?
>>724を解くのに逆像を考える必要なんてこれっぽっちも無いと言ってるだけですけど?
あなたがなぜそんなに逆像に拘るかが理解できない、まあ難癖付けたい性格なんでしょうね、友達にはなりたくないタイプ

886:132人目の素数さん
23/07/29 06:54:16.78 XUzPV7x4.net
>>814

逆像の要素が一意には定まらないので
列nが何を指すのかが明確ではないという難癖なのだよ
最初にそう書いたはずだが

逆像という言葉が気に入らないのなら別の言い方もできるが

887:132人目の素数さん
23/07/29 08


888::18:07.08 ID:yft0uicb.net



889:132人目の素数さん
23/07/29 08:29:02.21 sfQsqQVE.net
>>814
>あなたがなぜそんなに逆像に拘るかが理解できない
確率論と逆像の関係下記を、ご参照
なんか「確率変数は使わない」とか叫ばれそうw
広大 岩田先生 測度論と確率論良さそう(確率測度での逆像の重要性分かる)
(参考)
URLリンク(wiis.info)
WIIS
トップ 数学 確率と統計 確率変数
確率変数の分布
可測事象B∈B'
を任意に選んだとき、その逆像がもとの可測空間(Ω,F)
において可測であること、すなわち、
X^-1(B)∈σ(X)
が成り立つことが保証されます。
したがって、確率測度P:σ(X)→R
はこの逆像が起こる確率
P(X^-1(B))∈R
を常に特定します。
これを、確率変数Xの値が
Bに属する確率として採用し、
P(X∈B)=P(X^-1(B))
で表記します。
URLリンク(home.hiroshima-u.ac.jp)
岩田耕一郎
URLリンク(home.hiroshima-u.ac.jp)
確率統計C
URLリンク(home.hiroshima-u.ac.jp)
測度論と確率論
広島大学理学部数学科確率統計C講義ノート岩田耕一郎2007年7月4日

890:132人目の素数さん
23/07/29 08:39:12.86 sfQsqQVE.net
>>816
>ムスカ大佐を連想する

スレ主です
ありがとうございます

ムスカ大佐か
あなたは教養あるね
大学レベルの確率論の教養ないけどね

URLリンク(dic.pixiv.net)
ピクシブ百科事典
ムスカ
「私はムスカ大佐だ」
URLリンク(i.pximg.net)
スタジオジブリ制作のアニメ映画『天空の城ラピュタ』の登場人物。
飛行石を探索する任務を帯びた特務機関の所属で、階級は大佐。政府の密命を受けて軍と協同しラピュタの調査をしていた。
キャリア組と思われ、28歳(または32歳)という年齢で大佐にまで昇進している。この若さと後述するような性格からか軍の指揮官であるモウロ将軍には快く思われておらず、「青二才」と評されている。
表向きはおとなしく紳士的だが、その本性は目的のためには仲間すら裏切る冷酷な性格。
教養に優れ、複雑な暗号を解読したり、旧約聖書やラーマヤーナに通じている。
また、暗闇の中シータの髪留めだけを狙って撃つなど、射撃の腕にも長けており、決して背広組の文官なだけではない事が窺える。

URLリンク(ja.wikipedia.org)
ムスカ(英: Muska[1])は、スタジオジブリの映画『天空の城ラピュタ』に登場する架空のキャラクターで、本作の悪役。年齢は28歳。『ロマンアルバム』には32歳という記載もある。

891:132人目の素数さん
23/07/29 09:00:30.69 XUzPV7x4.net
ジブリ作品の中ではこれが一番よくできている

892:132人目の素数さん
23/07/29 09:18:07.09 Z2EbNfOS.net
>>815
>列nが何を指すのかが明確ではないという難癖なのだよ
列nは与えられている、よって逆像を考える必要は無い
と何度も書いてる
君は日本語を読めんのか? なら5ちゃんから出ていくべきだ さようなら

893:132人目の素数さん
23/07/29 09:19:04.88 sfQsqQVE.net
>>810
>ちなみにnのφによる逆像って {x∈R^N|φ(x)=n} のことなんだけど分かって言ってる? 分かって言ってないだろ

まことに、重箱の隅で悪いが(でも数学では大事)
決定番号n は、出題列 x∈R^N だけでは決まらないよ
(スレリンク(math板:30番) )
上記「箱入り無数目」と記号を合わせると
xの同値類の代表をrxとして(「箱入り無数目」ではrだが、rxとする)

φ:(x,rx)→n | n∈N
だよね?
だから、φ^-1:n→(x,rx)
であり、決定番号nの逆像は(x,rx)で
xそのものではない
ここは、結構重要ポイントかも

xの同値類を、下記にならって
[x]={x' ∈ R^N | x' ~ x}
と書く
rx ∈[x]
決定番号nを与えるrxは
rx ∈R^n-1
じゃない?
ここは、結構重要ポイントかも

(参考)
URLリンク(ja.wikipedia.org)
同値類
元 a の同値類は [a] と書き,a と ∼ によって関係づけられる元全体の集合
[a]={x ∈ X | a ~ x}
として定義される.同値関係 R を明示して [a]R とも書かれる.これは a の R-同値類といわれる

894:132人目の素数さん
23/07/29 09:21:44.87 Z2EbNfOS.net
>>817
>確率論と逆像の関係下記を、ご参照
まったく的外れ
おまえ単に"確率","逆像"で検索しただけやろw アホ

895:132人目の素数さん
23/07/29 09:24:00.01 sfQsqQVE.net
>>821 補足訂正

決定番号nを与えるrxは
rx ∈R^n-1
じゃない?
ここは、結構重要ポイントかも
 ↓
決定番号nを与えるrxは、しっぽの同一部分を無視して可変部分のみを考えると(その部分をrx'とする)
rx' ∈R^n-1
じゃない?
ここは、結構重要ポイントかも

896:132人目の素数さん
23/07/29 09:26:07.02 Z2EbNfOS.net
>>821
>まことに、重箱の隅で悪いが(でも数学では大事)
>決定番号n は、出題列 x∈R^N だけでは決まらないよ
重箱の隅にもなってないw
問題毎に条件を設定するのは自由
>>724では列nの決定番号=nという条件を設定しただけのこと

おサルは何一つ分かってないなw

897:132人目の素数さん
23/07/29 09:31:05.68 Z2EbNfOS.net
あのー どーでもいーんですが
結局>>724の確率答えないんですか?
さんざんごねて難癖付けた挙句に答えないですかそうですか じゃあさうよならー

おサルはバカだから答えなくていいよ おまえのバカ回答見ても仕方無い

898:132人目の素数さん
23/07/29 09:42:10.27 sfQsqQVE.net
>>819
>ジブリ作品の中ではこれが一番よくできている

これはこれは
夏目漱石の三四郎から、ジブリの『天空の城ラピュタ』までか・・
(余談ですが、なんかある本には哲学書のことも書いてあったな・・)

教養ありますねw
ジブリも、殆ど見てないな

899:132人目の素数さん
23/07/29 09:57:38.02 sfQsqQVE.net
>>819
>ジブリ作品の中ではこれが一番よくできている

ジブリ談義に割り込んで恐縮ですが
「箱入り無数目」で、1変数解析関数f(x)を使って
 >>732>>776のように
箱の外には、可算無限の x1,x2,・・ たちを明記sておく
そうすれば、級数展開 f(x)=a0+a1(x-c)+a2(x-c)^2+a3(x-c)^3+・・
から、連立方程式を解いて、係数を決めれば
「箱の外のxiから、箱の中のf(xi)が得られます。箱を開ける必要はありません」
という話、合ってますかね?

解析関数でなければ、適用できないし
箱の外のxiの表示がなければ、解析関数であっても、数当てはダメです

(物理など、一般的な多項式によるいろんな現象の補間法は、暗黙に背後に解析関数的現象があると仮定しているそうですが(log関数を使うときもあります))

900:132人目の素数さん
23/07/29 09:59:45.17 XUzPV7x4.net
>>820
与えられているのはφだったのでは?

901:132人目の素数さん
23/07/29 10:07:32.96 XUzPV7x4.net
>>826

>>夏目漱石の三四郎から、ジブリの『天空の城ラピュタ』まで

「これを書かずには死ねない」という気持ちの現れたものには
不滅の力が宿る。そこに読者に阿る気持ちが�


902:ャじると ダメになる。



903:132人目の素数さん
23/07/29 10:20:13.05 Z2EbNfOS.net
>>828
φは「存在している」とは書いたが「与えられている」とは書いてない
φの{列1,...,列100}への制限は与えられていると書いた

やはり君は日本語が読めないようだな 文盲に用は無い さようなら

904:132人目の素数さん
23/07/29 10:23:03.79 sfQsqQVE.net
>>823 補足
>決定番号nを与えるrxは、しっぽの同一部分を無視して可変部分のみを考えると(その部分をrx'とする)
>rx' ∈R^n-1
>じゃない?
>ここは、結構重要ポイントかも

要するに、決定番号 n vs n+1
は、ユークリッド空間で n-1次元 vs n次元 ってこと

2次元 vs 3次元
たった一つしか違わないが
平面 vs 立体
で全く違う話になる
それを、自然数 2 vs 3 に話をすり替える

ここ、「箱入り無数目」のゴマカシのトリックの一つですね
それが、”逆像を考えろ!”で見えてくるってことか!w

905:132人目の素数さん
23/07/29 10:27:03.01 sfQsqQVE.net
>>829
>「これを書かずには死ねない」という気持ちの現れたものには
>不滅の力が宿る。そこに読者に阿る気持ちが混じると
>ダメになる。

なるほど

906:132人目の素数さん
23/07/29 10:33:21.77 Z2EbNfOS.net
>>831
またサルが妄想症を拗らせてるなw
言っただろ?超サービス問題>>724にすら正答できない畜生に箱入り無数目なんて理解できるはずないと
諦めなさいw

907:132人目の素数さん
23/07/29 10:39:59.47 Z2EbNfOS.net
そもそも箱入り無数目において
R^N/~ の代表系
は存在しているが、その内容は一切不明
それでも勝つ戦略が成立するところが面白いところ
その辺がまったく分かってないから「存在している」ことと「与えられている」ことを混同するんだろうね

908:132人目の素数さん
23/07/29 10:41:19.41 XUzPV7x4.net
>>φの{列1,...,列100}への制限は与えられている
念のために意味を確認したいのだが
φが与えられているのではなく、あらかじめ与えられているのは
{列1,...,列100}という相異なる100個の実数列であるということでよろしいか?

909:132人目の素数さん
23/07/29 10:45:05.16 XUzPV7x4.net
>>788
>>つまりある φ:R^N→N が一つ存在している前提
こう書かれると、普通は一つのφ:R^N→Nが与えられていると
思ってしまうが、それでは日本語ができないことに
なってしまうのだろうか

910:132人目の素数さん
23/07/29 10:54:58.42 Z2EbNfOS.net
>>835
{列1,...,列100}が与えられている
φの{列1,...,列100}への制限が与えられている
何度もそう言ってるじゃんw 何が聞きたいの? 痴呆?

911:132人目の素数さん
23/07/29 10:57:40.54 Z2EbNfOS.net
>>836
はい、できないことになりますね、「存在している」と「与えられている」は意味が異なりますから

912:132人目の素数さん
23/07/29 11:01:26.80 sfQsqQVE.net
>>837
>φの{列1,...,列100}への制限が与えられている
だったら、φをきちんと定義しないと
数学は、はじまらないだろうw

913:132人目の素数さん
23/07/29 11:02:13.19 Z2EbNfOS.net
>>836
多項式 ax^2+bx+c が存在する ・・・ a,b,cは不明
多項式 ax^2+bx+c が与えられている ・・・ a,b,cは分かっている
違いが分かりますか?

914:132人目の素数さん
23/07/29 11:07:50.84 Z2EbNfOS.net
>>839
日本語読めませんか?
φの{列1,...,列100}への制限は定義してますけど?
悪いが、文盲には用はありません

915:132人目の素数さん
23/07/29 11:36:01.01 sfQsqQVE.net
>>841
>日本語読めませんか?
>φの{列1,...,列100}への制限は定義してますけど?
あんたの小学生みたいな日本語と
下記の広大 岩田先生の大学の確率論の記載ぶりと比べてみなw
大学レベルの数学の記載の緻密さが、決定的に欠けているんじゃない?
 >>817より
広大 岩田先生
URLリンク(home.hiroshima-u.ac.jp)
岩田耕一郎
URLリンク(home.hiroshima-u.ac.jp)
確率統計C
URLリンク(home.hiroshima-u.ac.jp)
測度論と確率論
広島大学理学部数学科確率統計C講義ノート岩田耕一郎2007年7月4日

916:132人目の素数さん
23/07/29 11:38:08.24 qRkUsGjH.net
目がっ!目があぁぁぁぁあああっ!

917:132人目の素数さん
23/07/29 11:42:16.39 Z2EbNfOS.net
>>842
言い訳無用

918:132人目の素数さん
23/07/29 12:04:44.59 3bKiHe9z.net
>>841
>>φの{列1,...,列100}への制限は定義してますけど?
その意味は分かるが
{列1,...,列100}がどういう集合であるかを指定せずにφが定義できるわけでは
ないだろう

919:132人目の素数さん
23/07/29 12:11:00.07 Z2EbNfOS.net
>>845
どういう集合とは?

920:132人目の素数さん
23/07/29 12:17:49.33 Z2EbNfOS.net
>>845
そもそもφは定義してないけど?

921:132人目の素数さん
23/07/29 13:13:42.82 sfQsqQVE.net
>>834
>そもそも箱入り無数目において
>R^N/~ の代表系
>は存在しているが、その内容は一切不明
>それでも勝つ戦略が成立するところが面白いところ
>その辺がまったく分かってないから「存在している」ことと「与えられている」ことを混同するんだろうね
全く数学になってない
小学生の作文以下
”R^N/~ の代表系
 は存在しているが、その内容は一切不明”
なんのこっちゃ?
アホ丸出しじゃん
逃げだよ、逃げ
数学の問題から、逃げているだけだ�


922:�



923:132人目の素数さん
23/07/29 13:20:35.31 Z2EbNfOS.net
>>848
おサルさん理解できないからって発狂しないでw

924:132人目の素数さん
23/07/29 13:26:53.16 Z2EbNfOS.net
おサルさんは選択公理理解してないもんね
選択公理は選択関数の存在を保証しているが、選択関数の定義については何も述べていない
選択関数が存在すれば勝つ戦略が成立することもぜんぜん理解できてないよね
まあ畜生に人間様の数学は無理なので、さっさと諦めましょう

925:132人目の素数さん
23/07/29 13:44:28.62 sfQsqQVE.net
>>796
>>まあ、あんたは必死に、確率空間についても、同様に”逃げで”打っているけどw
>逃げとは?
「逃げ」とは?
 >>744より再録
(引用開始)
>>>箱入り無数目の確率空間は以下。
>>>「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ.
>>s^kの決定番号が他の列の決定番号どれ
>>よりも大きい確率は1/100に過ぎない.
>難しい日本語だなあ
『「箱入り無数目の確率空間は以下から容易に解るよね」
とすればよい?
その程度の補完もできない耄碌爺さんは5ちゃんに向かないのでは?邪魔なので消えてくれると有難い』
(引用終り)
・”確率空間は以下から容易に解る”ではなく、確率空間を1行書き下せば良いでしょ
・多分、それでツッコミあるだろうけど、そこを恐れていたら ゼミで力つかない
・ツッコまれて、徹底的にボコボコにされる。そこで、力が付く
・あんたは、なにからなにまで「日本語の問題だ」と逃げて、「確率空間を1行書き下す」的なことをやらない
・逃げているだけじゃん

926:132人目の素数さん
23/07/29 13:51:14.57 Z2EbNfOS.net
そんな言葉尻捕らえて「逃げ」と言ってんだw
おサルさん必死過ぎw

927:132人目の素数さん
23/07/29 13:52:18.77 Z2EbNfOS.net
>>851
>「確率空間を1行書き下す」的なことをやらない
やってますけど?
おサルさんが理解できなくて記憶に残ってないだけでは?

928:132人目の素数さん
23/07/29 14:03:46.75 sfQsqQVE.net
>>850
>おサルさんは選択公理理解してないもんね
選択公理が分かってないのは、あんたも時枝さんも同様だ
「そもそも箱入り無数目は「良い代表系」を前提としていません。代表系が存在することのみを前提としています。存在は選択公理により保証されます。」>>667
だったろ?
”代表系”でなく、少数の代表が取れれば、「箱入り無数目」は完遂できる
例えば、全くの第三者の「同値類の集合と代表」作成者を決める
そもそも、「同値類の集合と代表」は、出題される数列を知らずに決めるから、このように第三者が決めても同じ
こうすれば、必要な有限列の「同値類の集合と代表」の作成だけで済むから、選択公理など不要
また、下記 Choice Games Sergiu Hart GAME2では、”選択公理なし”(可算選択公理)で、同じ「同値類の集合と代表」論法を示す
要するに、選択公理の張り子の虎であって
いかにも、パラドックスが起きそうな雰囲気づくりのネタでしかない
URLリンク(ja.wikipedia.org)
選択公理
選択公理の変種
可算選択公理
有限集合の族に対する選択公理
スレリンク(math板:2番)
URLリンク(www.ma.huji.ac.il)
Choice Games Sergiu Hart November 4, 2013
”A similar result, but now without using the Axiom of Choice.GAME2”
で、選択公理なしで同じことが成り立つから、”選択公理”は、単なる目くらましってことも暗示している

929:132人目の素数さん
23/07/29 14:08:18.64 sfQsqQVE.net
>>853
>>「確率空間を1行書き下す」的なことをやらない
>やってますけど?
>おサルさんが理解できなくて記憶に残ってないだけでは?
<院試の口頭試問>
教官:「確率空間を書け」
学生:「大分前に書きました、記憶に残ってないだけでは?」
教官:「繰り返す、確率空間を書け」
学生:「大分前に書きました、記憶に残ってないだけでは?」
教官:「・・・、零点でいいの? はい零点!」
まあ、アホ落第学生のお粗末な一席でしたwww
アホやな

930:132人目の素数さん
23/07/29 14:25:46.01 Z2EbNfOS.net
>>8


931:54 >”代表系”でなく、少数の代表が取れれば、「箱入り無数目」は完遂できる できません。おサルは何も分かってないね。 >こうすれば、必要な有限列の「同値類の集合と代表」の作成だけで済むから、選択公理など不要 はあ? >また、下記 Choice Games Sergiu Hart GAME2では、”選択公理なし”(可算選択公理)で、同じ「同値類の集合と代表」論法を示す GAME2では一つの同値類に属すどの列も同じ循環節を持つので、循環節のみからなる列を代表とするという構成が可能。よって選択公理は不要。 R^Nを対象とする箱入り無数目ではそうはいかない。 おサルは何も分かってないね。



932:132人目の素数さん
23/07/29 14:26:52.30 Z2EbNfOS.net
>>855
なんでサル畜生が教官の立場なんだよw
そこがおかしいだろw

933:132人目の素数さん
23/07/29 14:28:16.13 Z2EbNfOS.net
サル畜生は人間様に調教してもらう立場ってことが分からんのかw
まあサル知恵しか持たんからのうw

934:132人目の素数さん
23/07/29 14:37:24.70 Z2EbNfOS.net
まあ超サービス問題>>724に正答できない畜生に箱入り無数目なんて到底無理なのでさっさと諦めましょうね

935:132人目の素数さん
23/07/29 15:09:51.31 sfQsqQVE.net
>>855 補足
>>853
>>「確率空間を1行書き下す」的なことをやらない
>やってますけど?
>おサルさんが理解できなくて記憶に残ってないだけでは?

1)要するに、「箱入り無数目」なんて、世間では全く通用しない
 アホかと
2)で、「確率空間を1行書き下す」ことを、すれば
 クソみたいな確率空間かもしらんし、多少まともにしても
 確率空間にツッコミがあって、確率測度だなんだという議論になる
 そこを恐れて、「確率空間を1行書き下す」からの逃げだろう
 だけど、ちゃんと、確率空間や確率測度を理解した方が、長い人生で良いと思う
 そこから、「”天動説”ダメ!」>>779が出てくる
3)その方が良いよ。「”天動説”ダメ!」だと、それとちゃんとした確率論の理解と
 長い人生なんだから。早く、「”天動説”ダメ!」を理解する方が良いよ

936:132人目の素数さん
23/07/29 15:19:18.71 Z2EbNfOS.net
>>860
>>552

937:132人目の素数さん
23/07/29 15:35:20.74 yft0uicb.net
>>819
「アホやな」と言った矢先に「教養あるね」か
もうお前は全身不随の人に脳を除く全身を献体しろ

938:132人目の素数さん
23/07/29 18:47:15.53 sfQsqQVE.net
>>862
>>>819
>「アホやな」と言った矢先に「教養あるね」か
>もうお前は全身不随の人に脳を除く全身を献体しろ
ありがとうございます
スレ主です
「教養あるね」を、マジに解釈したかな?
ご当人も苦笑しているだろう
これ、ダジャレ
ダジャレを解説するのも野暮だが
 >>819より
「ジブリ作品の中ではこれが一番よくできている」
に対してのコメントなのだが
ジブリ作品が、世間一般でいう「教養」には入らないことは自明だ!w
 >>826より、多少引用すると
「これはこれは
 夏目漱石の三四郎から、ジブリの『天空の城ラピュタ』までか・・」
となっていて、以前に 彼が「三四郎」を読んでいることを「教養有る」と私が称したら(私は読んで無かったのでw)
ご当人から、「三四郎ごときで教養と言われても・・驚いた」みたいなコメントをしていたので
それが伏線で、「ジブリ作品ごときで・・ 教養と言われても・・」と、クスリと苦笑するというのがオチなのです
お分かりか?

939:132人目の素数さん
23/07/29 19:19:42.92 OdN3p3hh.net
爺の考える「教養」は分からんw
早く逝けば?

940:132人目の素数さん
23/07/29 19:20:09.66 sfQsqQVE.net
>>861
ご苦労さま
スレ主です
ありがとう

 >>>552より
552132人目の素数さん
2023/07/19(水) 21:52:59.57 ID:4yn9tDSJ
>>551
>確率測度を用いない理屈らしいですね
自明なので書かれてないだけですが、確率を扱っている以上もちろん確率測度を用います。
箱入り無数目の確率空間は (Ω={1,2,...,100}, F=2^Ω, P(f∈F)=|f|/|Ω|) です。|x|はxの濃度です。
(引用終り)


1)まず、日替わりIDなので、このID:4yn9tDSJがご当人という証明がないし、「前に書いた」と言われても 他人には判断難しい
2)さて、数学的に Ω={1,2,...,100}が天下りすぎでは?
 本来、しっぽの同値類と決定番号→Ω={1,2,...,100} を、数学として導くというところが示されていない
3)だから、Ω={1,2,...,100} に対する批判として、可算無限列ではなく、有限長n列の場合にもΩ={1,2,...,100}とできる
 同じように、Ω={1,2,...,100}とできるとしたら、可算無限列と有限長n列との�


941:キは見えなくなっている  にも拘わらず、”可算無限列のみ確率99/100”の説明ができないと おかしい 4)あと、F=2^Ωと教条的におくのではなく  いま問題となっているのは F={di ,dmax} でしょ? (dmaxは、di以外の最大値) (こうしておくのは、Ω={1,2,...,100}以外を考えるため) 5)P({di<dmax})=99/100 が、「箱入り無数目」の結論だが  果たして、2)~4)にきっちり数学的裏付けを与えて  P({di<dmax})=99/100 を、導くことができるのか?  それが、いまの問題です



942:132人目の素数さん
23/07/29 19:24:13.77 sfQsqQVE.net
>>864
ありがとね
笑えないダジャレ、すまんかったw

943:132人目の素数さん
23/07/29 20:02:40.13 Z2EbNfOS.net
>>865
>2)さて、数学的に Ω={1,2,...,100}が天下りすぎでは?
Ω={1,2,...,100}としたら勝つ戦略になるという主張なんだから、Ω={1,2,...,100}となる理由なんて要らない。
> 同じように、Ω={1,2,...,100}とできるとしたら、可算無限列と有限長n列との差は見えなくなっている
> にも拘わらず、”可算無限列のみ確率99/100”の説明ができないと おかしい
有限列はしっぽの同値関係がうまく機能しないのでダメ
> いま問題となっているのは F={di ,dmax} でしょ? (dmaxは、di以外の最大値)
確率空間分かってる? 分かってないだろ
>5)P({di<dmax})=99/100 が、「箱入り無数目」の結論だが
> 果たして、2)~4)にきっちり数学的裏付けを与えて
> P({di<dmax})=99/100 を、導くことができるのか?
> それが、いまの問題です
問題でもなんでもない。
100列のどの列の決定番号も自然数。(これはおサルも認めた)
自然数の全順序性から単独最大決定番号の列は1列以下。
100列のいずれかをランダム選択して単独最大決定番号の列を選ぶ確率は1/100以下。
その時だけ負けるので勝率は99/100以上。

944:132人目の素数さん
23/07/29 21:07:47.78 XUzPV7x4.net
>>850
>>選択関数が存在すれば勝つ戦略が成立する
選択関数は分かるが
「勝つ戦略」の定義が分からない

945:132人目の素数さん
23/07/29 21:12:00.56 Z2EbNfOS.net
勝率99/100以上 なんなら1-ε以上 記事嫁

946:132人目の素数さん
23/07/29 21:12:40.58 sfQsqQVE.net
>>867
ありがと
謎のプロ数学者氏なら別のアプローチがありそうだがw
こっちは素人なので
まず
(引用開始)
Ω={1,2,...,100}としたら勝つ戦略になるという主張なんだから、Ω={1,2,...,100}となる理由なんて要らない。
問題でもなんでもない。
100列のどの列の決定番号も自然数。(これはおサルも認めた)
自然数の全順序性から単独最大決定番号の列は1列以下。
100列のいずれかをランダム選択して単独最大決定番号の列を選ぶ確率は1/100以下。
その時だけ負けるので勝率は99/100以上。
(引用終り)
 反例構成として
1)えーと、Ω={1,2,...,100}が正当化できるか否かの問題で
 ゲーム1:
 いま2列A,Bで各箱1でサイコロの目を入れる
 大きい目が勝ち、同数は引き分け
 Aを開けたら1だった。Bの期待値(平均値)は3.5であり、負け5/6、引分け1/6
 Aを開けたら6だった。Bの期待値(平均値)は3.5であり、勝ち5/6、引分け1/6
 これで言いたいことは、開けた箱次第で、確率が変わること
2)さて、ゲーム2:
 ゲーム1で、変形サイコロ大1~10(期待値5.5)と小1~5(期待値3)とする
 Aを開けたら小の4だった。細かい計算は省くが、勝てる確率5割以下
 Aを開けたら大の4だった。細かい計算は省くが、勝てる確率5割以上
 これで言いたいことは、同じ4でも開けていない箱の期待値で、確率計算が変わるということ
3)さて、ゲーム3:
 ゲーム1で、無限サイコロ(期待値∞)二つ、つまりサイコロを転がして自然数n∈Nが一様に出るとする
 Aを開けたら4だった。細かい計算は省くが、勝てる確率0
 Aを開けたら100億だった。細かい計算は省くが、勝てる確率0 (∵ 期待値∞)
 これで言いたいことは、無限サイコロでは、まともな確率計算ができない(∵ Nが非正則分布(下記)だから )
4)要するに、Ω={1,2,...,100}の正当化が大問題ってことです(なお、ゲーム1~3全て箱中の数は自然数)
(参考)
スレリンク(math板:221番)
URLリンク(ai-trend.jp)
2020/04/14 AVILEN Inc.
非正則事前分布とは??完全なる無情報事前分布?
ライター:古澤嘉啓

947:132人目の素数さん
23/07/29 21:12:57.14 Z2EbNfOS.net
耄碌爺は文句ばっか言ってないで自分で記事嫁や
字も読めんほど耄碌したんか?

948:132人目の素数さん
23/07/29 21:21:46.42 Z2EbNfOS.net
>>870
「勝つ戦略は存在するか?」との問いに勝てない戦略の存在を示してもナンセンス。
何度言えば分かるんだ?このサルは
>4)要するに、Ω={1,2,...,100}の正当化が大問題ってことです(なお、ゲーム1~3全て箱中の数は自然数)
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.」
のどこが正当じゃないと?

949:132人目の素数さん
23/07/29 21:24:34.75 XUzPV7x4.net
>>871
その


950:記事を高校の教室で朗読したら 教室の生徒の大半が「なるほど」と頷いてくれると思う?



951:132人目の素数さん
23/07/29 21:32:52.93 Z2EbNfOS.net
>>873
読めんなら去れ

952:132人目の素数さん
23/07/29 21:40:30.85 sfQsqQVE.net
>>873
>その記事を高校の教室で朗読したら
>教室の生徒の大半が「なるほど」と頷いてくれると思う?
なるほど
もし、時枝氏の数学セミナーの記事だということを伏せて示したら
高校生たちは「細かいところは、理解できないが、箱を開けずに数を当てるのは不可」
という判断をするだろうね
「箱入り無数目」にたぶらかされるのは
時枝氏の数学セミナーの記事だということで、バイアスが入り
数学科出身で「おれさま、数学得意! 可算無限列のしっぽの同値類と決定番号か、素晴らしい!」
と、ハメ手にハメられる人くらい

953:132人目の素数さん
23/07/29 21:50:06.97 Z2EbNfOS.net
>>875
まーた自分の直感こそ正しいと信じて疑わないサルのお気持ち表明かw
およそ数学とは無縁だなw

954:132人目の素数さん
23/07/29 21:50:28.54 sfQsqQVE.net
>>871
>> 4)要するに、Ω={1,2,...,100}の正当化が大問題ってことです(なお、ゲーム1~3全て箱中の数は自然数)
>「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.」
>のどこが正当じゃないと?
全文引用しよう
スレリンク(math板:31番)
問題に戻り,閉じた箱を100列に並べる.
箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列S^1,S^2,・・・,S^lOOを成す(肩に乗せたのは指数ではなく添字).
これらの列はおのおの決定番号をもつ.
さて, 1~100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
 第1列~第(k-1) 列,第(k+1)列~第100列の箱を全部開ける.
第k列の箱たちはまだ閉じたままにしておく.
開けた箱に入った実数を見て,代表の袋をさぐり, S^1~S^(k-l),S^(k+l)~S100の決定番号のうちの最大値Dを書き下す.
 いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:S^k(D+l), S^k(D+2),S^k(D+3),・・・.いま
 D >= d(S^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった.
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s~k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はS^k(D)=r(D)と賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.
(補足)
S^k(D+l), S^k(D+2),S^k(D+3),・・・:ここで^kは上付き添え字、(D+l)などは下付添え字
(引用終り)
問題は
1)>>870のゲーム1&2で、開けていない箱の期待値と、開けた箱の数との比較だという意識がなくなっていること
2)同 ゲーム3で、上限のない無限サイコロでは、まともな確率計算ができない(∵ Nが非正則分布(下記)だから )こと

955:132人目の素数さん
23/07/29 22:34:33.60 /xs+Saf8.net
>>875
工学部学卒が俺様は数学ができるエッヘンのほうがバカな勘違いの極みだから。

956:132人目の素数さん
23/07/29 22:58:52.78 Z2EbNfOS.net
>>877
箱入り無数目と何の関係も無い>>870を持ち出したところでナンセンスなだけ
ナンセンスな行為を行うのはバカ

957:132人目の素数さん
23/07/29 23:11:37.12 sfQsqQVE.net
>>878
>工学部学卒が俺様は数学ができるエッヘンのほうがバカな勘違いの極みだから。
勘違いだな
1)工学部で大事なことは
 良識有る現実的判断ができるかどうかだ
2)部下が、コンピュータで計算した書類を持ってきた
 まず、チェックすべきは、妥当な計算結果かどうか?
 こういう計算なら、この程度の数値になるという良識が必要
 「おい、この数値はおかしいぞ。桁ズレしている。もう一度計算をやり直せ」
 と言ってやることだ(入力ミスとか、プログラムのミスとかね)
3)もし時枝「箱入り無数目」が正しいと
 a)解析関数でもないのに、ある関数値が他の可算無限個の値から、確率99/100で的中できる>>732
 b)確率過程論の連続なランダムウォークで、あるランダムウォークの値が、他の可算無限個の値から、確率99/100で的中できる
 c)雑音理論のホワイトノイズのある値が、他の可算無限個の値から、確率99/100で的中できる
 などなど、従来の理論と合わないから
 ”眉つば”理論と早く気づくべし
 そういう良識有る現実的判断ができるかどうかだ

958:132人目の素数さん
23/07/29 23:21:48.54 Z2EbNfOS.net
>>880
>3)もし時枝「箱入り無数目」が正しいと
> a)解析関数でもないのに、ある関数値が他の可算無限個の値から、確率99/100で的中できる>>732
> b)確率過程論の連続なランダムウォークで、あるランダムウォークの値が、他の可算無限個の値から、確率99/100で的中できる
> c)雑音理論のホワイトノイズのある値が、他の可算無限個の値から、確率99/100で的中できる
> などなど、従来の理論と合わないから
なぜ合わないの?

959:132人目の素数さん
23/07/29 23:22:30.77 sfQsqQVE.net
>>879
>箱入り無数目と何の関係も無い>>870を持ち出したところでナンセンスなだけ
ダメを押そうか?w
1)>>877 で「第1列~第(k-1) 列,第(k+1)列~第100列の箱を全部開ける.
 第k列の箱たちはまだ閉じたままにしておく.」とあるよね
 つまり、開けた箱と閉じたままの箱との比較がある
 これがあると、「この仮定が正しい確率は99/100」は言えない
 その指摘が、>>870のゲーム1&2
2)決定番号には、上限がない。つまり、自然数Nと同様に上限が発散している
 この場合、決定番号は発散する非正則分布を成す
 だから、まともな確率計算ができない
 その指摘が、>>870のゲーム3だ

960:132人目の素数さん
23/07/29 23:32:13.23 sfQsqQVE.net
>>881
>なぜ合わないの?
うん
>> a)解析関数でもないのに、ある関数値が他の可算無限個の値から、確率99/100で的中できる>>732
ここは、>>732-733に説明した通り
>> b)確率過程論の連続なランダムウォークで、あるランダムウォークの値が、他の可算無限個の値から、確率99/100で的中できる
ここは、数学の確率過程論を勉強してもらうしかない。おれは、勉強した
>> c)雑音理論のホワイトノイズのある値が、他の可算無限個の値から、確率99/100で的中できる
ここも、雑音理論を勉強してもらうしかない。おれは、勉強した
(参考)
URLリンク(ja.wikipedia.org)
ホワイトノイズ (White noise)
URLリンク(ja.wikipedia.org)
SN比
URLリンク(ja.wikipedia.org)
ノイズ

961:132人目の素数さん
23/07/29 23:34:34.95 LG76UrY9.net
単位やった奴
犯罪的やな

962:132人目の素数さん
23/07/29 23:35:53.54 sfQsqQVE.net
>>883 リンクずれ訂正
ここは、>>732-733に説明した通り
 ↓
ここは、>>732-734に説明した通り

963:132人目の素数さん
23/07/29 23:38:45.59 sfQsqQVE.net
>>884
ありがとう
そういう 「”天動説”ダメ!」>>779 が分からない人が多い方が、面白いw

964:132人目の素数さん
23/07/29 23:41:09.67 Z2EbNfOS.net
>>882
超サービス問題>>724に正答できないバカに箱入り無数目は絶対理解できないので諦めましょう

965:132人目の素数さん
23/07/29 23:47:02.63 Z2EbNfOS.net
>>883
>ここは、>>732-733に説明した通り
>>736で論破済み 日本語読めませんか?
>ここは、数学の確率過程論を勉強してもらうしかない。おれは、勉強した
説明になってないので却下
>ここも、雑音理論を勉強してもらうしかない。おれは、勉強した
説明になってないので却下

966:132人目の素数さん
23/07/30 03:21:41.49 Pn7clfrm.net
>>836
説明しないと分かって貰えない皮肉で下卑た愉悦に浸ってる醜態を晒しといて
よく恥ずかしくならんな、流石は恥知らずと厚顔無恥と開き直りの三位融合体

967:132人目の素数さん
23/07/30 05:58:08.41 esnUGRo8.net
>>869
どうなったら勝ちでどうなったら負けかというところが
元の記事では
明確ではないという意味

968:132人目の素数さん
23/07/30 06:14:30.56 IpiBUMr/.net
>>890
文盲?
「勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 」

969:132人目の素数さん
23/07/30 06:55:00.35 esnUGRo8.net
>>891
つまり
勝つ場合と負ける場合の片方が起こりうるということだが
起こりうる場合はこれで尽くされるという設定が
明確ではない

970:132人目の素数さん
23/07/30 06:59:10.61 IpiBUMr/.net
>>892
勝ちでも負けでもない場合ってどんな場合だと?

971:132人目の素数さん
23/07/30 07:44:07.72 esnUGRo8.net
勝ちの場合と負けの場合だけが起こるという設定に
異を唱えているわけではない。
どうなったら勝ちで
どうなったら負けかということが
述べられている部分が
数学的に明確ではないような気がする

972:132人目の素数さん
23/07/30 07:48:36.67 IpiBUMr/.net
>>894
どう明確じゃないと?

973:132人目の素数さん
23/07/30 08:21:59.74 2UJHJvqn.net
>>889
>説明しないと分かって貰えない皮肉で下卑た愉悦に浸ってる醜態を晒しといて
>よく恥ずかしくならんな、流石は恥知らずと厚顔無恥と開き直りの三位融合体
これは、蕎麦屋さんならぬ
”蕎麦屋の粋蕎じゃなくて十割蕎麦焼酎の粋蕎だ”>>746だね
晦渋な文で返すところが
粋蕎氏らしいね

974:132人目の素数さん
23/07/30 08:34:02.46 esnUGRo8.net
>>895
例えば
n番目の箱にn回サイコロを振って出た目の数を入れる
というのは
許されるのかどうか

975:132人目の素数さん
23/07/30 08:37:50.64 IpiBUMr/.net
>>897
文盲?
「どんな実数を入れるかはまったく自由」

976:132人目の素数さん
23/07/30 09:12:34.73 esnUGRo8.net
>>898
つまりサイコロを振って入れるのでも構わないということ?

977:132人目の素数さん
23/07/30 09:13:42.80 2UJHJvqn.net
>>888
スレ主です

>>>883
>>ここは、>>732-733に説明した通り
>>736で論破済み 日本語読めませんか?

はい、論破か(ひろゆき氏下記ね)

>>ここは、数学の確率過程論を勉強してもらうしかない。おれは、勉強した
>説明になってないので却下
>>ここも、雑音理論を勉強してもらうしかない。おれは、勉強した
>説明になってないので却下

見ていると、あなたは大学レベルの確率論に踏み込んだ議論が皆無でしょ?
確率測度についても、同様
もし、ここに書いたというのがあれば、教えて下さい
手元にある本に、「吹田予想」の解決が書いてある
”「吹田予想」の解決”を、ここで説明しろと言われても、多分本の著者だって困るだろうw
(「ここに書くには、余白が狭すぎる!」という定型句を述べるしかないw)

そろそろ終わりですかね?
(アマ同士の碁の対局では、よく言うセリフ(プロのルールは黙ってダメをつめる。ダメつめで勝敗が変わるときがある))
まあ、ダメつめまでやりますよw

(参考)
URLリンク(www.moneypost.jp)
2021.07.01 15:00
マネーポストWEB
大学ゼミの討論で「はい論破!」を繰り返す痛い学生たちが増殖中
URLリンク(www.sponichi.co.jp)
スポニチ
トップ>芸能>2021年8月6日
ひろゆき氏、空前絶後の“論破ブーム”に戸惑い「僕は一回も『はい論破!』って言ったことない

URLリンク(www.)アマゾン
現代複素解析への道標 レジェンドたちの射程 Tankobon Hardcover – November 24, 2017
書評
susumukuni
5.0 out of 5 stars 複素解析の語り部によるレジェンドたちの射程
Reviewed in Japan on December 17, 2017
「吹田予想」(ベルグマン核と対数容量との間で成立する最良不等式)解決の関わりは著者の前著『岡潔 多変数関数論の建設』でも触れられているが、本書の最終章では「スタイン多様体の変形族に現れるベルグマン計量の対数劣調和性から、吹田予想や最良L2評価式付きの正則関数の拡張定理の別証明が得られる」というベルントソンとレンペルトによる最新の興味深い結果が紹介されており素晴らしい。

978:132人目の素数さん
23/07/30 09:21:32.19 IpiBUMr/.net
>>900
>見ていると、あなたは大学レベルの確率論に踏み込んだ議論が皆無でしょ?
箱入り無数目に学部レベルの確率論は不要

>確率測度についても、同様
箱入り無数目の確率測度は既に書いたが、文盲?

>そろそろ終わりですかね?
始まってすらない
超サービス問題>>724に正答できない時点であなたは箱入り無数目について語るレベルにない


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch