純粋・応用数学・数学隣接分野(含むガロア理論)13at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)13 - 暇つぶし2ch766:132人目の素数さん
23/07/26 11:06:44.96 gX0O22uw.net
>>698
>>>696
>> 1)可算無限長数列の決定番号の期待値は、無限大に発散している
>でも「任意の実数列の決定番号は自然数」なんでしょ?あなた認めましたよね?
>じゃあ期待値を考えてもナンセンスじゃん
1)「任意の実数列の決定番号は自然数」は、上記の2)に示した
2)一方、自然数N全体を考える Ω=Nだ。N中にその元nたちは、一様に分布していると仮定する(厳密には、下記コンパクト性定理の”その集合の任意の有限部分集合がモデルを持つ”の表現を借りて言えば、Nの任意の有限部分集合が一様に分布している)
 このとき、期待値(=平均値)は無限大に発散している
 (略証:背理法による。期待値(=平均値)が有限であれば、集合Ωは有限集合でなければならない。Nが無限集合であることに矛盾する)
3)よって、任意のn∈Nは有限であり、常にNの期待値∞よりはるかに小さいことが分かる
(参考)
URLリンク(ja.wikipedia.org)
コンパクト性定理(英: Compactness theorem)とは、一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。つまりある理論の充足可能性を示すにはその有限部分についてのみ調べれば良いという非常に有用性の高い定理であり、モデル理論における最も基本的かつ重要な成果のひとつである。 <



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch