23/07/25 23:14:23.81 JnEkWB8c.net
>>677
>濊拖は期待値を知らないと言わざるを得ない
ああそうか、期待値ね
ありがとう
良いことを教えて貰った
とすると
可算無限長数列の決定番号の期待値定理:
1)可算無限長数列の決定番号の期待値は、無限大に発散している
2)如何なる有限の値dmaxとの比較でも、dmax<決定番号の期待値(=未開封の箱の可算無限長数列の決定番号の期待値)
この定理から
開封した箱の列から、dmaxを得ても
dmax<決定番号の期待値(未開封の箱の列)
だから
時枝「箱入り無数目」の手法は、不成立であることが分かるな
(参考)
URLリンク(ja.wikipedia.org)
確率論における期待値(きたいち、英: expected value)は確率変数を含む関数の実現値に確率の重みをつけた加重平均である[1]。確率分布に対して定義する場合は「平均」と呼ばれることが多い。
独立同分布であれば、標本平均は期待値に収束することが知られている(大数の法則)。