純粋・応用数学・数学隣接分野(含むガロア理論)13at MATH純粋・応用数学・数学隣接分野(含むガロア理論)13 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト1050:132人目の素数さん 23/07/31 10:02:51.03 jznoxopE.net Theorem 0.3 will be extended to Theorem 1.5. A C^2 pseudoconvex manifold (M, φ) is holomorphically convex if the canonical bundle is negative outside a compact set. This extends Grauert’s theorem asserting that strongly 1-convex manifold are holomorphically convex. 1051:132人目の素数さん 23/07/31 10:05:12.95 jznoxopE.net The proofs will be done by combining the method of Takayama with an L^2 variant of the Andreotti-Grauert theory [A-G] on complete Hermitian manifolds whose special form needed here will be recalled in§3. In §4 we shall extend Theorem 0.4 for the domains Ω as in Theorem 0.1. Whether or not Ω in Theorem 0.1 is holomorphically convex is still open. 1052:132人目の素数さん 23/07/31 10:05:50.76 jznoxopE.net The proof of the desired improvement of Theorem 0.1 will rely on the following. 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch