純粋・応用数学・数学隣接分野(含むガロア理論)12at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)12 - 暇つぶし2ch639:132人目の素数さん
23/01/10 19:41:43.53 M0jZf/Bt.net
>>231
>5次で可解群で、位数20のフロベニウス群や、位数10の二面体群は非可換だよ
>でも、非可換でも、ラグランジュ分解式だよね
これ、ガロア理論の基本定理というか
ガロア対応分かってたら
絶対に口にしない馬鹿発言だよね
F20⊃D10⊃C5⊃{e} (正規列)
Q⊂M⊂L⊂K
つまり
Gal(K/Q)=F20ならば
Gal(K/L)=C5 Gal(L/Q)=C4=F20/C5
となるようにできる
だからラグランジュの分解式が使えて可解
こんな基本も分かってなくて
「非可換群でもラグランジュ分解式一発使えます」(ドヤぁ)
って馬鹿でしょw
1は物理板逝ったほうがいいよ
ま、物理板でもウザがられるだろうけどね

640:132人目の素数さん
23/01/10 19:55:45.84 M0jZf/Bt.net
要するに
「ガロア群が巡回群⇔ラグランジュ分解式一回で解ける」
ってちゃんと計算して体感しないと
いつまでたっても検索馬鹿のままよね
可解群ってのは巡回群の「積み重ね」になってるってことなんで
だからラグランジュ分解式を「反復適用」すれば解けるって仕掛け
そこ分かってないから
「非可換群でもラグランジュ分解式が直接一回適用できる!」
って馬鹿発言すんのよ
カルダノやフェラリの解法を眺めればそうなってないことは明らか
石井本にも全部書いてあるからさ 
読んでない(読んでも理解できない)ってまるわかり
ひどすぎるね 数学書読めないんじゃ宝の持ち腐れよ

641:現代数学の系譜 雑談
23/01/10 20:58:15.77 L7mrktRJ.net
>>639
>ガロア対応分かってたら
>絶対に口にしない馬鹿発言だよね
>F20⊃D10⊃C5⊃{e} (正規列)
これ、ガロアの第一論文読んでたら
絶対に口にしない馬鹿発言だよ
”F20⊃D10⊃C5⊃{e} (正規列)”は、後講釈だよ
かつ、ガロアは奇素数p次の方程式がべき根で解ける条件として
線型群を導いたんだ
上記は、単にp=5と置いたときだけの話
もっとも、ガロア理論のテキスト本では、p=5についてだけ詳しい(私は、その受け売りだけれどね)
決闘で亡くなったとき20歳という
ガロアがこの高みに到達したのは、
おそらく18歳か19歳かだろう
たしかにガロアは数学の天才だね
まあ、あんたは、よちよち歩きで、
石井本では、それが限界だろうな

642:現代数学の系譜 雑談
23/01/10 22:18:40.11 L7mrktRJ.net
>>267
>URLリンク(www1.kcn.ne.jp)
>MeBio  数学テキスト (2014.12.27 20:42)
> 1 の n 乗根の巾根表示
> -n = 11, 13, 7-
間違い見つけた!
P5
β^σ^4= α4 + α0η + α2η^2 + α3η^3 + α3η^4 = βη
 ↓
β^σ^4= α4 + α0η + α1η^2 + α2η^3 + α3η^4 = βη
β^σ^3= α3 + α4η + α0η^2 + α2η^3 + α2η^4 = βη^2
 ↓
β^σ^3= α3 + α4η + α0η^2 + α1η^3 + α2η^4 = βη^2
原因は、思うにコピー作って番号を直すときに、
イージーミスが残ったんだろうね
あと、書かれているように
「β, βη, βη^2, βη^3, βη^4 は F 上すべて共役で,すべて x^5 - β^5 = 0 の解であり,
NL/F β = β ・ βσ・ β^σ^2・ β^σ^3・ β^σ^4= β ・ βη^4・ βη^3・ βη^2・ βη = β^5 ∈ F
であることが分かる.従って β^5 を具体的に計算すれば,β はその元の 5 乗根として巾根表示されることになる.」
なるほどね「β ・ βη^4・ βη^3・ βη^2・ βη = β^5」だね
だから、ラグランジュ・リソルベント使うと
とにかく、「x^5 - β^5 = 0 」なる二項方程式はできるんだ、とにかくね
問題は、β^5 ∈ Fとなるかどうか?
(書かれているが、F = Q(η) で、ηは1の虚数 5 乗根です)
それは、ガロア群が巡回群のときには、β^5 ∈ Fが成り立つんだ
しかし、一般の5次方程式では、
そうではないってことだね

643:132人目の素数さん
23/01/10 23:24:06.07 tVoPdrjb.net
結局体K自身かその代数拡大体Lを考えて、計算で導かれる
L係数の多項式P(x)、それのL上での既約因子分解を決定することにより、
代数方程式F(x)=0のガロア群を決定できる。

644:132人目の素数さん
23/01/10 23:54:44.14 XhlK1o7o.net
これは言ってることはID:M0jZf/Btが完全に正しい。
1=雑談はガロア論文も表面的にしか読めてない。
ガロア論文では確か「ガウス氏の方法」と書いてあったかな?
これは要するに組成列の各群が巡回群であるようにできる
=群が可解群であれば、ガウスのDisq.Arith.の方法が
適用できるということで、それはラグランジュ分解式に
よる解法。1は問題意識を持って読んでないから
そこを素通りしている。ガロアは「それはガウスがやってるから
同様にやればできる」とあえて自分の論文では詳述してないだけで
だからといって分かってなくていいということではない。

645:132人目の素数さん
23/01/11 00:05:11.67 GKitIFxO.net
>組成列の各群
正確には「剰余因子群または組成因子」のことね。

646:132人目の素数さん
23/01/11 06:30:15.86 rXBeetzH.net
>>641
>>F20⊃D10⊃C5⊃{e} (正規列)
>>Q⊂M⊂L⊂K
>>つまり
>>Gal(K/Q)=F20ならば
>>Gal(K/L)=C5 Gal(L/Q)=C4=F20/C5
>>となるようにできる
>>だからラグランジュの分解式が使えて可解
>これ、ガロアの第一論文読んでたら
>絶対に口にしない馬鹿発言だよ
 馬鹿は1だろw
>”F20⊃D10⊃C5⊃{e} (正規列)”は、後講釈だよ
>かつ、ガロアは奇素数p次の方程式がべき根で解ける条件として線型群を導いたんだ
 なんかわけもわからず、線型群ガーとかイキりまくってるけど
 x^5-2=0の、Q上のガロア群はF20だから
 Gal(Q(η、2^(1/5))/Q)=F20
 でもηを1の5乗根とした場合
 Gal(Q(η、2^(1/5))/Q(η))=C5
 Gal(Q(η)/Q)=C4
>>644
>これは言ってることはID:M0jZf/Btが完全に正しい。
>1=雑談はガロア論文も表面的にしか読めてない。
>ガロア論文では確か「ガウス氏の方法」と書いてあったかな?
>これは要するに
>組成列の各(剰余)群が巡回群であるようにできる=群が可解群
>であれば、ガウスのDisq.Arith.の方法が適用できるということで、
>それはラグランジュ分解式による解法。
>1は問題意識を持って読んでないからそこを素通りしている。
 ま、1は軽率だから
「ベキ根による拡大=クンマー拡大」
 としか記憶せず、それだけで「分かった!」といっちゃってる
 ラグランジュ分解式は複雑(w)すぎて記憶に残らない
 サルのオツムは実に粗雑 それじゃ人間様の数学はわからんわw

647:132人目の素数さん
23/01/11 06:38:59.53 rXBeetzH.net
>>646の追加
>問題は、β^5 ∈ Fとなるかどうか?
>(書かれているが、F = Q(η) で、ηは1の虚数 5 乗根です)
>それは、ガロア群が巡回群のときには、β^5 ∈ Fが成り立つんだ
 粗雑な1は、ただ「ガロア群が」というけど
 Gal(K/L)=C5 なら、β^5 ∈ L と正確に書くべき
 必要な情報(この場合L)を落とすから、1は勝手に混乱して、
 LのところがQになっちゃう凡ミスするw
 (ま、実際はミスじゃなくて根本的誤解ですがね)
 まあ、そもそもGal(L/Q)が巡回群となる場合、
 つまり円分拡大にあたるところが
 1には全然わかってないですね
 それでクンマー拡大?意味ないわぁ

648:132人目の素数さん
23/01/11 06:48:56.55 rXBeetzH.net
素数p次の方程式 x^p-2=0 のQ上のガロア群は、
CpとC(p-1)の「半直積」(直積に非ず!非可換群!)
で、2つの巡回置換で生成される
それが素数p次の場合のQ上のガロア群で最大のものとなる
というのが、ガロアの第一論文の定理


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch