純粋・応用数学・数学隣接分野(含むガロア理論)12at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)12 - 暇つぶし2ch155:現代数学の系譜 雑談 ◆yH25M02vWFhP
22/12/31 10:20:34.13 rNlYJ3SK.net
つづき

p=11の場合
 ここまでくれば、α,βのとり方が分かります。p=11のとき、mod11の原始根は2ですので、平方剰余={4,5,9,3,1}、平方非剰余{2,8,10,7,6}です。
 そこで、ζ=exp(2πi11)とおいたうえで、
α=ζ+ζ^3+ζ^4+ζ^5+ζ^9
β=ζ^2+ζ^6+ζ^7+ζ^8+ζ^10
とおくと、α+β=-1がわかります。
αβ=(ζ+ζ^3+ζ^4+ζ^5+ζ^9)(ζ^2+ζ^6+ζ^7+ζ^8+ζ^10)
 =ζ^3+ζ^7+ζ^8+ζ^9+1
+ζ^5+ζ^9+ζ^10+1+ζ^2
+ζ^6+ζ^10+1+ζ^+ζ^3
+ζ^7+1+ζ^10+ζ^+ζ^2+ζ^4
+1+ζ^4+ζ^5+ζ^6+ζ^8=5+2(ζ+ζ^2+?+ζ^9+ζ^10)=3
 したがって、α,βは、
x^2+x+3=0
の解となります。そして、この2次方程式の判別式は、-11ですので、
α-β=±√-11
となります。
(引用終り)

ガロア理論的視点では
1)p=11の場合、(Z/pZ)×は位数10の巡回群C10で
2)巡回群は、アーベルで、部分群はすべて正規部分群
3)位数5の巡回群C5を部分群にもち
4)可解列 C10⊃C5⊃{e} を構成できる
5)平方剰余で 原始根rの偶数乗 {1,r^2,r^4,?,r^p-3} (1=r^p-1) は
 巡回群Cp-1中の正規部分群C(p-1)/2であり、上記p=11の場合も同様
6)これが、ガウス和に対するガロア理論的視点でしょう

(参考)
URLリンク(ja.wikipedia.org)
巡回群
群を乗法的に書く場合には、位数 n の巡回群を Cn で表す(n = ∞ の場合も許す)。例えば g^3g^4 = g^2 は C5 において正しい(このことの加法的な対応物は 「3 + 4 = 2 は Z/5Z において正しい」である)。
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch