小中学校範囲の算数・数学の問題のスレ Part 60at MATH
小中学校範囲の算数・数学の問題のスレ Part 60 - 暇つぶし2ch744:132人目の素数さん
23/04/18 21:38:12.62 MVxL7XWI.net
図により三平方の定理を示す方法を利用する方法はみんなが知ってるこれでいいんじゃない?
三平方の定理自体は持ち出さなくてもいいね
図 → (p+q)^2 = (2p)^2 + 2pq
→ q^2 = 3p^2
URLリンク(o.5ch.net)

745:132人目の素数さん
23/04/19 01:37:06.82 ioFzsGo5.net
>>715
そこまでして解いて、果たして>>702の解答としてベストか?
とっ散らかってるようにしか見えんが。
この問題は三平方や平方根無しで解くとどうしても無理矢理になるから
>>708の言う通り、それら抜きで解く意味が感じられんな。
まあ、もっと鮮やかな解法があるのかもしれんが。

746:132人目の素数さん
23/04/19 02:05:04.35 2gaf2Out.net
>>715
素晴らしい!
その図がそのまま元の問題>>702の求めるべき面積になってるんだね
求めるべき面積
=正方形[辺2p]+正三角形[辺2p]✕2
=図>>715全体の正方形[対角線a]
=a^2/2
鮮やかな解法で感動した

747:132人目の素数さん
23/04/19 14:24:05.58 AAIu/nN7.net
結果論じゃん。

748:132人目の素数さん
23/04/19 19:13:30.68 sfT8SeUh.net
>>717
中学入試目指す子ならほぼ常識らしいw、30°+75°+75°の二等辺三角形を使う方法よりも、分かりやすくていいな

749:イナ
23/04/19 23:18:55.00 wrOaW7lS.net
>>574
>>702
xcos15°=a/2
cos15°=(√6+√2)/4
x(√6+√2)=2a
x(1+√3)=a√2
x^2(4+2√3)=2a^2
x^2(2+√3)=a^2
x^2=a^2(2-√3)
∴面積はx^2+x^2(√3/2)=x^2(2+√3)/2
=a^2(2-√3)(2+√3)/2
=a^2/2

750:132人目の素数さん
23/04/22 22:08:34.38 ZgYdi7GX.net
>>702
URLリンク(imgur.com)
ヒント。

751:132人目の素数さん
23/04/22 22:14:08.56 Ft7j0Y3w.net
>>721
あんた周回遅れやで。

752:132人目の素数さん
23/04/22 22:29:15.49 fmTGKIlD.net
>>720
前提として平方根や三角関数は学習前なので使ってはいけないらしい
>>721
その方法は>>717で既出だな

753:イナ ◆/7jUdUKiSM
23/04/23 01:52:56.04 MRYcQ41b.net
>>720
cos15°=cos(45°-30°)
=cos45°cos30°+sin45°sin30°
=(√2/2)(√3/2)+(√2/2)(1/2)
=√6/4+√2/4
=(√6+√2)/4

754:132人目の素数さん
23/04/23 15:43:38.45 kjJNj3Et.net
商品25個を仕入れ値の40%増しの値段で売った。
いくつか売れ残りが出たので廃棄すると、1個あたりの利益は仕入れ値の12%になった。
このとき売れた個数はいくらですか?
この問題をお願いします。
答えが6.25個になっちゃう

755:132人目の素数さん
23/04/23 20:33:09.09 q+V6aEaX.net
>>725
仕入れ値を100円とする。25個仕入れたので2500円支払っている。
利益が12%なので全体の売り上げは2500円×1.12=2800円。
売値は100円の40%増しで140円。
1個140円のものを2800円売り上げるには2800÷140で20個売ればよい。
売れ残りを廃棄しようが倉庫に放り込んでようが関係ない。返品返金していないのだから。

756:132人目の素数さん
23/04/23 21:10:50.86 kjJNj3Et.net
>>726
廃棄は偽物(フェイク)・・・!
ありがとうございます!

757:イナ
23/04/24 01:32:28.58 HdEqooEU.net
>>724 >>725 x個売れたとし、仕入れ値をy円とすると、 1.4y×x-y×25=0.12y×x 1.28x=25 x=2500/128 =625/32 =19.53125 ∴多くとも19個 (絶対20個は売れてない)



759:132人目の素数さん
23/04/24 09:53:10.90 cK9a/89s.net
>>725
こういう問題は「利益」でなく「全体(の収入や支出)」を考えるのが定石

「1個あたりの利益は仕入れ値の12%になった」
→1個あたりの収入は(仕入れ値の)1.12倍
→全体の収入は1.12✕25=(仕入れ値の)28倍

「仕入れ値の40%増しの値段で売った」→(仕入れ値の)1.4倍でx個を売った
→全体の収入は(仕入れ値の)1.4x倍

この両者(=全体の収入)が等しいのだから
→1.4x=28
→x=20

760:132人目の素数さん
23/04/24 16:03:26.21 uDjeLTUj.net
日本語の解釈に難があると>>727みたいに変な計算しちゃうのか

761:132人目の素数さん
23/04/24 16:03:48.39 uDjeLTUj.net
>>728だった

762:イ-
23/04/24 18:25:16.83 HdEqooEU.net
>>728
>>726
1個あたりの利益は仕入れ値の12%
って言われたから、
112%じゃないし、
9.53125個になっちゃう。

763:132人目の素数さん
23/04/24 22:56:12.29 nK7yZnUO.net
>>732
「1個あたりの利益は仕入れ値の12%になった」

「1個あたりの売価は仕入れ値の112%」

764:イナ
23/04/25 17:49:25.02 0igpRrlI.net
>>728
>>725
売れ残りを廃棄したとき、
x個売れたとし、仕入れ値をy円として、
1.4y×x-y×25=0.12y×x
1.28x=25
x=2500/128
=625/32
=19.53125
∴多くとも19個
売れ残りを廃棄しないとき、
x個売れたとし、仕入れ値をy円として、
1.4y×x-y×25=0.12y×25
1.4x=1.12×25
x=28/1.4
=20
∴20個

765:132人目の素数さん
23/04/26 03:02:34.24 IXp+a/R2.net
(a^3)+(b^3)+(c^3)=(a*b*c)^2
を満たす1以上の整数a,b,cを求めよ

766:132人目の素数さん
23/04/26 06:56:12.50 BW3iNtQY.net
>>735
1,2,3

767:132人目の素数さん
23/04/26 07:29:50.08 84vtTWDR.net
答えだけを答えても0点
あと答えが何組あるか?を漏れなく答えないと大幅減点

768:132人目の素数さん
23/04/26 07:46:22.83 IXp+a/R2.net
xを自然数として、x!とは1からxまでのすべての数をかけたものである。
例) 5! = 1*2*3*4*5=120
では、
a! + b! + c! = (a!)*(b!)
を満たす自然数a, b, cを求めよ

769:132人目の素数さん
23/04/26 12:04:46.63 M1a+rEYD.net
WMA a≦b
m := min {a,b,c},
m = c
→ c! = a!b! - a! - b!
= (a! - 1)(b! -1)-1
≧ (c! -1)(c! - 1) -1
→ c!² - c! ≦ 0
→ c = 1
→ (a!-1)(b!-1) = 2
→ (a!,b!) = (2,3)
→ cont.
∴ c > m
b > m
→ (m+1)! | LHS, (m+1)! |̸ RHS
→ cont.
∴ b = m
∴ a = b < c
∴ a! = 2 + (a+1)(a+2)..c‥①
c>a+2
→3|̸RHS of ①
→ a = 1,2
→ 1! = 2 + 2×3..c ∨ 2! = 2 + 3×4..c
→ cont.
∴ c = a+1,a+2
a≧5
→(a+2)²
 ≧ 2+(a+1)(a+2)
 ≧ RHS of ①
 = LHS of ①
 ≧ a!
 ≧ a(a-1)(a-2)(a-3)(a-4)
 ≧ (a-2)⁵
→ 3≦ a-2 ≦ ((a+2)/(a-2))² ≦ 49/25
→ cont.
∴ a≦4
1! < 2 + (1+1) < 2 + (1+1)(1+2)
2! < 2 + (2+1) < 2 + (2+1)(2+2)
3! = 2 + (3+1) < 2 + (3+1)(3+2)
4! > 2 + (4+1)(4+2) > 2 + (4+1)

770:132人目の素数さん
23/04/26 19:31:04.28 ybes6GIS.net
3! + 3! + 4! = 3! * 3!

771:132人目の素数さん
23/04/26 20:37:03.68 tKXgdzzz.net
>>737
すべて求めよと書いてないから問題不成立。

772:132人目の素数さん
23/04/26 21:34:12.66 IXp+a/R2.net
(a^3)+(b^3)+(c^3)=(a*b*c)^2
を満たす1以上の整数a,b,cの組み合わせを全て求めよ

773:132人目の素数さん
23/04/26 22:24:22.11 jRSG77Pn.net
a≦b≦cとしてよい
b≧3とする
f(x) = a/(bx)²+b/(ax)²+x/(ab)² - 1
とするとf(x)は凸関数で
f(b) = a/b⁶+2/(a²b) - 1 ≦ 1/b⁵+2/b-1 < 0
f(a²b²) = 1/(a³b⁴)+1/(a⁶b³) > 0
は明らか
f(a²b²-1) = a/(b(a²b²-1))²+b/(a(a²b²-1))²-1/(ab)²
    


774:< 0 を示す (b(a²b²-1))² - 2a(ab)² > a((ab)⁴-2(ab)²+1) - 2a(ab)² = a((ab)⁴-4(ab)²+1) > 0 (∵ (ab)²≧9) ∴ a/(b(a²b²-1))² < 1/(2(ab)²) (a(a²b²-1))² -2b(ab)² ≧ (ab)⁴-2(ab)²+1 - 2b(ab)² = a⁴b⁴ - 2a²b² - 2a²b³+1 = a²b²( a²b²-2b -2)+1 ≧ a²b²( b(b-3) + b-2 ) > 0 ∴ b/(a(a²b²-1))² < 1/(2(ab)²) ∴ a/(b(a²b²-1))²+b/(a(a²b²-1))²-1/(ab)²  < 1/(2(ab)²)+1/(2(ab)²)-1/(ab)² = 0 以上により方程式f(x) = 0 は領域x≧bにおいて整数解を持ち得ない ∴ 与式がa≦b≦cにおいて解を持つには(a,b)=(1,1),(1,2),(2,2)が必要 (a,b)=(1,1)→1+1+c³=c²は整数解なし (a,b)=(1,2)→1+8+c³=4c²はc=3が唯一の整数解 (a,b)=(2,2)→1+1+c³=c²は整数解なし



775:132人目の素数さん
23/04/27 16:03:47.49 xNSPwN8f.net
小学生に算数を教えてるのですが、昔過ぎて分からなくなりました
30-6×4+2の答えは何ですか?
掛け算を先にしたので6×4で24
A30-24+2=8
B24+2=26 30-26=4
答えが8と4に分かれてサタンですけどこれって前から計算するのが正解ですか?

776:132人目の素数さん
23/04/27 16:04:04.15 fEeONGdV.net
出しっぱなしに答えっぱなしw
誰も本当の正解が分からないというw

777:132人目の素数さん
23/04/29 11:34:40.65 uCbInKeO.net
URLリンク(imgur.com)
URLリンク(o.5ch.net)

778:132人目の素数さん
23/04/29 12:28:08.35 uCbInKeO.net
>>744
>B24+2=26 30-26=4
Bの計算はカッコがついている場合の話
30-24+2ではなく30-(24+2)なら、24+2から先に計算する。
カッコがついてないなら、先頭から計算しなさいな
もし、後ろから計算したいなら
30-24+2=30-(24-2)=30-22=8
とせなあかん

779:イナ ◆/7jUdUKiSM
23/04/30 02:43:05.75 cUUSJxKv.net
>>734
>>746
3{(1+√5)/2-1}=3(√5-1)/2
≒1.2360679・3/2
=1.8541

780:132人目の素数さん
23/04/30 12:29:22.91 0fwaCOIg.net
>>746
作図して計測
> (ABC2S(A,B,C)+ABC2S(A,C,D)+ABC2S(A,D,E))/ABC2S(A,p[2],p[3])
[1] 1.381966

781:イナ ◆/7jUdUKiSM
23/04/30 17:05:19.25 1Hjbeklm.net
>>748
>>746
一辺1の正五角形の対角線でできる正五角形の一辺をxとすると、
x=(3-√5)/2
対角線は1-x,x,1-xに三分されるから、
対角線の求める面積Sを含まない側の面積は、
1/x-1,1,1/x-1に三分される。
一辺1の正五角形の面積S/x^2は、
三分された面積のうちのとなりあう二つの面積1/x五つをSに足したものだから、
S+5/x=S/x^2
S+5(3+√5)/2=2S/(7-3√5)=S(7+3√5)/2
5(3+√5)=(5+3√5)S
5(3+√5)(3√5-5)=(45-25)S
∴S=√5
=5x/(1-x^2)
=5(3-√5)/2(1-x^2)
1-x^2=(7-3√5)/2
S=5(3-√5)/(7-3√5)
=5(3-√5)(7+3√5)/4
=5(6+2√5)/4

782:イナ ◆/7jUdUKiSM
23/04/30 17:06:44.74 1Hjbeklm.net
>>748
>>746
一辺1の正五角形の対角線でできる正五角形の一辺をxとすると、
x=(3-√5)/2
対角線は1-x,x,1-xに三分されるから、
対角線の求める面積Sを含まない側の面積は、
1/x-1,1,1/x-1に三分される。
一辺1の正五角形の面積S/x^2は、
三分された面積のうちのとなりあう二つの面積1/x五つをSに足したものだから、
S+5/x=S/x^2
S+5(3+√5)/2=2S/(7-3√5)=S(7+3√5)/2
5(3+√5)=(5+3√5)S
5(3+√5)(3√5-5)=(45-25)S
∴S=√5

783:132人目の素数さん
23/04/30 20:35:24.78 lptg2kKC.net
>>751
正五角形なんて言ってないやん

784:イナ ◆/7jUdUKiSM
23/04/30 21:29:25.35 nRsbR1xy.net
じゃあ適当な五角形で解けば。
めんどくさいだけ。
それなら正五角形で答え出したほうがいいじゃん。

785:132人目の素数さん
23/04/30 22:34:47.80 0fwaCOIg.net
>>753
必要条件を満たす数値を出せばいいんじゃね?
正五角形以外で値が一定かが問われているわけじゃなし。

786:132人目の素数さん
23/04/30 23:30:39.77 0fwaCOIg.net
題意を満たす正五角形の1辺の長さAは2.346386でその面積Sは9.472136
対角線で形成される正五角形の1辺の長さは0.8962397
(数式略)

その面積sはS*(a/A)^2=1.381966

787:132人目の素数さん
23/04/30 23:37:47.07 0fwaCOIg.net



788:Q考図 https://i.imgur.com/HI6XNad.png



789:132人目の素数さん
23/05/01 00:26:34.98 yEzH4nCy.net
青の対角線と星の頂点を結ぶ直線は平行
affine変換でその星の頂点を結ぶ直線が二等辺三角形の底辺になるようにしておいて青の辺で青の対角線と平行っぽいやつを考える
その平行っぽいやつの中点を中心に回転させていくと両腕に当たる部分のオレンジ部は片方が単調に増大し片方は単調に減少していく
そして底辺と平行になったとき同じになるが元々同じ面積であったのだから実は最小から平行であった
結局蒼の対角線と辺と星の頂点を結ぶ線は全部平行
affine 変換して頂点のひとつが原点、そこから出てる2本の直線がx軸、y軸になるようにしてx軸上の4点の座標が(0,0),(1,0),(a+1,0),(a+2,0)、y軸上の4点の座標が(0,0),(0,1),(0,a+1),(0,a+2)となるようにとれる
実際軸上の線分の長さは面積の相当が1:a:1とおける
すると2本の直線がx+y=1とx/(a+1)+y/(a+2)=1となる
この交点のx座標がa+2だからa²+a-1=0
以下略

790:132人目の素数さん
23/05/01 14:16:48.53 9/eoYuW3.net
図何のために描いてんだろね
図見ておよそ1.4倍なんて事がありうるかどうか確かめるために描くんじゃないの?

791:イナ ◆/7jUdUKiSM
23/05/02 04:29:16.50 zFklblKA.net
>>753
>>746
正五角形の一辺の長さをa,
正五角形の対角線でできる正五角形の一辺の長さをx,
その面積をSとすると二等辺三角形の相似より、
a:a-x=a-x:x
(a-x)^2=ax
a^2-3ax+x^2=0
a=(3x+x√5)/2=(3+√5)x/2
x:a-x=1:(1+√5)/2
すなわち一辺aの正五角形は、
一辺xの正五角形に、
面積1の二等辺三角形5つと、
面積(1+√5)/2の三角形5つを足したものである。
S+5+5(1+√5)/2=S(a/x)^2
S+5(3+√5)/2=S{(3+√5)/2}^2=S(7+3√5)/2
5(3+√5)/2=S(5+3√5)/2
S=5(3+√5)/(5+3√5)
=5(3+√5)(3√5-5)/(45-25)
=(9√5-5√5)/4
=√5

792:132人目の素数さん
23/05/02 11:01:16.47 eo6s41/4.net
質問お願いします
90キロ離れたP駅Q駅がある。P駅から列車Aが、Q駅から列車Bがそれぞれ向かい合って同時に出発する。
2本の列車がすれ違ったあと、列車BがP駅に着くまでに20分かかった。列車Aの速さを毎時45キロとするとき次の問に答えよ。但し列車の長さは考えないものとする。
①2本の列車が同時に出発してすれ違うまでにかかった時間をX時間、列車Bの速さを時速Y㌔として、XとYの関係を表す式を2つ答えよ
答え ①45X+XY=90 ②XY+1/3Y=90
②列車Bの速さを求めよ
答え 時速90キロ
中3の問題です
答えを見ても子供が分からず私も解きましたが分かりません
お力貸して下さい

793:イナ ◆/7jUdUKiSM
23/05/02 12:12:16.42 xElYzAR7.net
>>759
>>760
90-XY=45X
20分=(1/3)時間だからY/3=45X
二式目を解いて、
Y=135X
一式目に代入し、
90-135X^2=45X
2-3X^2=X
3X^2+X-2=0
(3X-2)(X+1)=0
X=2/3
(2/3)時間=40分
Y=135X=135(2/3)=90
∴時速90キロ
=90という書き方にそろえるなら、
45X+XY=90
Y/3+XY=90
そうなるかなぁ。

794:132人目の素数さん
23/05/02 13:30:37.96 uXaDh+G1.net
>>760
> ?2本の列車が同時に出発してすれ違うまでにかかった時間をX時間、列車Bの速さを時速Y?として、XとYの関係を表す式を2つ答えよ
> 答え ?45X+XY=90 ?XY+1/3Y=90
出発してからすれ違うまでに、列車Aが移動した距離は
 時速45km✕時間X = 45Xkm

出発してからすれ違うまでに、列車Bが移動した距離は、
 時速Y✕時間X = XY

当然これらの和は、ABのすれ違うまでの総移動距離90になるため、
45X+XY=90が成立する。

また、すれ違うまでの時間をX、すれ違ってからBが駅に到着するまでの時間が20分(=1/3時間)なので、
Bの総移動距離90は


795:以下の通りとなる。 90=XY+(1/3)Y 後は、単純にこれらを連立して解けばいいだけ。 ==== 45X+XY=90=XY+(1/3)Y なので、 45X=(1/3)Y Y=135X 90=XY+(1/3)Y に、上記のY=135Xを代入して、 90=135X^2 + 45X 2 = 3x^2 + x 3x^2 + x - 2 = 0 (3x-2)(x+1)=0 ・・・以下略



796:132人目の素数さん
23/05/02 14:50:22.51 LRNYoie+.net
>>760
それって模範解答?
1つ目の式は
列車AがX時間で走った距離を列車Bは20分で走ったんだから
Y/3=45X
の方がいいよな。普通こうすると思うけど…

797:132人目の素数さん
23/05/02 21:58:44.28 eo6s41/4.net
>>762
式の意味を教えて頂きありがとうございます
そこが理解できなかったものですから…
>>761さん>>763さんもご丁寧にありがとうございます
ちなみに塾講の模範解答です

798:132人目の素数さん
23/05/02 23:49:52.72 sOGyxlIB.net
なんだまだ小学生にバカにされたいのか尿瓶は

799:132人目の素数さん
23/05/03 16:14:11.19 DV9LoRGg.net
>>746
URLリンク(imgur.com)
以下、簡略化のため、面積は[PQRST]のように[]を使って表現する。
[PQRST]=x. [ETP]=y. [BTC]=z
また、条件より
[ASR]=[BTS]=[CPT]=[DQP]=[ERQ]=1
が成立する。
こうすると、いくつかの三角形の面積をx,yを使って以下のように表現できる。
[BPE] = [BTS] + [PQRST] + [EQR] = 1 + x + 1 = 2+x
[BTE] = [BPE] - [ETP] = (2+x) - y
[CSE] = 2+x
[CTE] = 1+y
[TSE] = [CSE] - [CTE] = (2+x)-(1+y) = 1+x-y
底辺BT,TPに注目すると、以下の面積比が成立する。
[BTE]/[TPE]=[BTC]/[TPC]
(2+x-y)/y = z/1 -- (α)
底辺CT,TSに注目すると、以下の面積比が成立する。
[CTE]/[TSE]=[CTB]/[TSB]
(1+y)/(1+x-y)=z/1 -- (β)
α、βを連立して(2+x-y)/y = (1+y)/(1+x-y)
これを解くと、y=(1+x)/2
[BTC]=z = (2+x-y)/y=(x+3)/(x+1)
BTCの面積がx(=[PQRST])にのみ依存することから、
同様に[ABS]=[BCT]=[CDP]=[DEQ]=[EAR]=(x+3)/(x+1)
さらに、同様に[TSE]=(1+x)/2が成立する。
[ATE] = [ASR] + [ARE] + [TSE]= 1 + ((x+3)/(x+1)) + (x+1)/2
[TCE] = [TCP] + [TPE] = 1 + (1+x)/2
[ATB] = [ASB] + [STB] = ((x+3)/(x+1)) + 1
底辺AT,TCに注目すると、以下の面積比がわかる。
[ATE]/[TCE] = [ATB]/[TCB]
これをxについて解くと、x=√5

800:132人目の素数さん
23/05/03 17:37:24.76 I5kzkHoH.net
>>765
どこの国立を落ちたの?

801:132人目の素数さん
23/05/03 17:42:46.21 I5kzkHoH.net
>>760
②が XY + (20/60)Y = 90と書かれていてば答を見たら理解できただろうな。

802:132人目の素数さん
23/05/03 22:38:35.62 EkV4Q31x.net
>>767
アンタは国立すら受けられないだろアホすぎて

803:132人目の素数さん
23/05/04 07:48:48.04 Jbjf4fAz.net
>>744
負の数の概念を教えるのは中1なので、アレなんだが、
(+30)+(-6)x(+4)+(+2)
となっているので、先に掛け算計算して、
(+30)+(-24)+(+2)
になる。
後は、足し算と引き算だけなので、好きな順番で計算してok
なので、答えは8ですよん。
Bの書き方では、
-24+2=-22 にならないと駄目。

804:132人目の素数さん
23/05/04 08:01:35.11 8NiKEFeJ.net
>>767=自称学歴尿瓶ジジイの英語力()とくとご覧あれw
724 卵の名無しさん (ワッチョイ 3358-8TD4 [14.13.16.0])[sage] 2022/10/05(水) 13:30:27.35 ID:rczEbvNg0
I told my colleage nureses that I have such allergy to beauties that I feel itchy everywhere when I work with them.
Ahahahahahah
>colleage
>nureses
920 卵の名無しさん (JP 0H52-BsRZ [217.138.212.122 [上級国民]])[sage] 2023/03/24(金) 15:55:12.52 ID:sCq5Ou+HH
先々週のseptick shockの患者、懇意なナースに聞いたらもう食事が始まっていますよと教えてくれた。
夜遅くまで麻酔をかけたのが報われた感じで気分が( ・∀・)イイ!!
報酬も良かったし
>septick shock

805:132人目の素数さん
23/05/05 13:20:51.86 ptAo4+tk.net
>>767
脳内学歴と言われるとやっぱり発狂するみたいだな

806:132人目の素数さん
23/05/06 10:43:44.86 RUE6NwYx.net
n,mは、n>1,m>1を満たす整数とする。
(2^n - 2^0)*(2^n - 2^1)*(2^n - 2^2)*……*(2^n - 2^(n-1)) = m!
を満たすn,mを求めよ
※1 2^0=1である。
※2 m!とは1からmまでの全ての整数をかけた値である。つまり、m!=1*2*…*(m-1)*m

807:132人目の素数さん
23/05/06 14:47:17.84 iN3wJ/p9.net
>>772
投稿は自己申告だからね。
で、シリツ卒なんだろ?
国立なら躊躇なく自己申告できるから。

808:132人目の素数さん
23/05/06 14:58:41.89 0Cotoek2.net
>>774
ここにいる人全員東大だからnurseの複数形もまともにつづれない脳内学歴はさっさとご退場を笑

809:132人目の素数さん
23/05/06 18:16:42.26 k6VGVU2B.net
n=2,m=2

810:132人目の素数さん
23/05/06 18:22:28.84 k6VGVU2B.net
m=4

811:132人目の素数さん
23/05/07 16:59:03.61 Sk4OBsG7.net
30以下の8つの相異なる自然数からなる集合Sがある。
この時、Sの部分集合A,Bで以下の条件を満たすものが存在することを示せ。

・ A,Bの要素数は4
・ A≠B
・ A,Bの全要素の和は等しい。

812:132人目の素数さん
23/05/07 18:58:29.96 Ekh/Bry5.net
[[1]]
[1] 27 4 7 21

[[2]]
[1] 30 14 3 12

813:132人目の素数さん
23/05/07 19:10:36.55 Ekh/Bry5.net
>>773
n=2 m=3
(2^2-2^0)(2^2-2^1)=3*2=3!

814:132人目の素数さん
23/05/07 20:44:51.74 HV5gXER0.net
v₂(LHS) = 1/2n(n-1)
v₂(RHS) = ⌊m/2⌋ + ⌊m/4⌋+.. < m
∴ m > 1/2n(n-1)
m! > √(2πm)(m/e)ᵐexp(1/(12(m+1))
> 8ᵐ ( if m > 6 )
> 2^(3/2n(n-1))
(2ⁿ-2⁰)(2ⁿ-2¹)..(2ⁿ-2ⁿ⁻¹) < 2^(n²)
∴ 3/2n(n-1) < n²
∴ n ≦ 2

815:132人目の素数さん
23/05/07 20:47:21.33 HV5gXER0.net
v₂(LHS) = 1/2n(n-1)
v₂(RHS) = ⌊m/2⌋ + ⌊m/4⌋+.. < m
∴ m > 1/2n(n-1)
m! > √(2πm)(m/e)ᵐexp(1/(12(m+1))
> 8ᵐ ( if m > 6 )
> 2^(3/2n(n-1))
(2ⁿ-2⁰)(2ⁿ-2¹)..(2ⁿ-2ⁿ⁻¹) < 2^(n²)
∴ 3/2n(n-1) < n²
∴ n ≦ 3

816:132人目の素数さん
23/05/08 18:18:13.46 xXQxLIiZ.net
おい尿瓶

817:132人目の素数さん
23/05/10 11:55:00.83 lqvqXxG4.net
Sの4元部分集合X={ a,b,c,d } (昇順)に対してF(X) = b - a + d - cと定める
異なる4元集合の組みX = { a,b,c,d }(昇順), X' = { a',b',c',d' }(昇順)が良い組みであるとは
a≠b', a≠d', b≠a', b≠c', c≠b', c≠d', d≠a', d≠c'
が満たされる時とする、すなわち{ a,b',c,d' }と( a',b,c',d }が共に4元集合となるときとする
(良い組みの数は1083組ある)
良い組みの数を下から評価する
良い組み{{a,b,c,d},{ a',b',c',d' }}(共に昇順)においてA= {a,b,c,d},{ a',b',c',d' }とおいて
・♯A = 7, a=a'は₈C₇×₆C₃=8×20/2=80
・♯A = 7,


818:d=d'も80 ・♯A = 6, a=a',b=b'は₈C₆×₄C₂=28×6/2=84 ・♯A = 6, d=d',c=c'も84 ・♯A = 5, a=a',b=b',c=c'は₈C₅×₂C₁=56×2/2=56 ・♯A = 6, d=d',c=c',b=b'も56 合わせて少なくとも(80+84+56)×2=440通り この440組以上の良い組み{X,Y}に対して2元集合{F(X),F(Y)}を対応させるときFの値が常に28以下の自然数であり、28以下の自然数の異なる2数の組み合わせの数が₂₈C₂ = 378組みしかない事からいずれかの良い組み{a,b,c,d}(昇順), {a',b',c',d'}(昇順)においてそれらのF値は等しい値をとる このとき4元集合{ a,b',c,d' }と( a',b,c',d }は総和が等しい 



819:132人目の素数さん
23/05/12 07:25:41.52 wKV8LZhY.net
中2数学です
画像の問題について、解答のような連立方程式を出すところまではできたのですが
その先、うまく解けません
まず式を簡単にするために、上の式は600を掛け
1500-10x-10y+15x+12y=1830
→5x+2y=330
下の式は1440を掛けて
3000-20x-20y+30x+24y=3600
→10x+4y=600
としました
ここから加減法で解こうとしたらxもyも消えてしまい解けません
解き方が間違っているのだと思いますか、どこがどう悪いですか?
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

820:132人目の素数さん
23/05/12 07:37:35.21 bY2x10Kz.net
>>785
下の式で一部xとyが入れ替わっています

821:132人目の素数さん
23/05/12 07:40:48.49 bY2x10Kz.net
>>785
> 下の式は1440を掛けて
> 3000-20x-20y+30x+24y=3600
+30y+24xとするところを+30x+24yとしてしまっています

822:132人目の素数さん
23/05/12 07:54:53.37 wKV8LZhY.net
>>786
ありがとうございます
すみません。自分の答えを見返したら、下の式の
y/48+x/60になるところがx/48+y/60となっていました
ただ、上りをx、下りをyとするなら
行きで時速40kmだった上り(x)に費やす時間は、帰りは時速48kmになるのでx/48では?
同様に下り(y)にかかる時間もy/60となるように思うんですが…

823:132人目の素数さん
23/05/12 07:56:48.69 wKV8LZhY.net
あ~~~レスしてから気付いた
上りと下りは行きと帰りで逆になるんですね…
行きのとき上りだった道は、帰りは下りになる、と…
自己解決しました
考え至らずでお恥ずかしい

824:132人目の素数さん
23/05/12 16:13:58.26 wh3RBQpy.net
>>774
発言がアホすぎて自己申告が全く信用されてないのに何言ってんだんw

825:132人目の素数さん
23/05/13 11:44:05.51 4spZgGup.net
1! + 2! + … + n!
が平方数となる 自然数 nを求めよ

826:132人目の素数さん
23/05/13 12:15:09.33 rqR9x1OU.net
n≧4 → 1! + 2! + … + n! ≡ 3 ( mod 5 )

827:132人目の素数さん
23/05/13 13:08:19.91 n/MZZVix.net
だからなんやねんw

828:132人目の素数さん
23/05/13 13:13:04.13 n/MZZVix.net
ああ、だから解なしってか!
失礼!
てかホンマに≡3?
てか小中学校範囲?

829:132人目の素数さん
23/05/13 15:13:17.29 39dD+aeV.net
n=1,3

830:132人目の素数さん
23/05/13 15:23:04.99 39dD+aeV.net
n≧4のとき 
Σ[k=1,4]k!=1+2+6+24=33≡3(mod5) Σ[k=5,n]k!≡0(mod5)
Σ[k=1,n]k!=Σ[k=1,4]k!+Σ[k=5,n]k!≡3(mod5)
k=0,±1,±2のとき (5m+k)^2≡k^2≡0,1,4(mod5)

831:132人目の素数さん
23/05/13 19:13:03.00 FseRHt27.net
このページの下部に次の問題があります
URLリンク(math.005net.com)
「y=ax+bにおいてa<0でxの変域が -2≦x≦4, yの変域1≦y≦13 のとき a,bの値をそれぞれ求めよ」
答えはa=-2、b=9とあるのですが、自分が計算するとどの方法でも a=2、b=5になってしまいます
正しい計算方法はどんなものでしょう?

832:132人目の素数さん
23/05/13 20:40:51.95 39dD+aeV.net
右下がりのグラフだから(-2,13),(4,1)を通る
a=(13-1)/(-2-4)=-2
b=y-ax=1-(-2)*4=9

833:132人目の素数さん
23/05/13 21:18:36.64 4spZgGup.net
>>794
一応、高校入試の問題だよ

834:132人目の素数さん
23/05/13 21:23:43.25 4spZgGup.net
>>796
正解。

835:132人目の素数さん
23/05/15 15:16:18.79 xs2r+zuY.net
よろしくお願いします。
この図は、因数分解の問題と解凍です。
URLリンク(i.imgur.com)

この問題って、どういう公式を使ってどういう順序に分解完成となるのでしょうか?
また、数学の得意なみなさんの見解をぜひお聞かせいただきたいとがあります。
因数分解の問題って、ヒラメキが大事で、記憶力やセンスのない人間には圧倒的不利というイメージがあるのですが、
人一倍がんばって問題を解きまくってたくさん経験すれば、バカでもできるようになるものなんでしょうか?

836:132人目の素数さん
23/05/15 15:22:25.22 OJLaPeS9.net
公式なんていらん
yz-zx=-z(x-y) 
ひらめきより慣れだな。

837:132人目の素数さん
23/05/15 17:14:25.29 F+gG4mTK.net
>>801
因数分解こそ知識と経験。一部ひらめきが必要なのもあるけど、そんなのは趣味の領域。入試レベルだったら訓練次第で誰でもできるようになるよ。
ひらめきはいらんけど記憶力はいるかな。「このパターンはアレだな」っていうのを覚える記憶力が。

838:132人目の素数さん
23/05/20 16:44:49.75 0HA/3aDn.net
>>7
29個

839:132人目の素数さん
23/05/21 18:19:38.53 +h1miU1p.net
[定理]
平方数と立方数にはさまれた
唯一の数は26である
[証明]
k,xは自然数,kx≠0とする
x^3-(x+k)^2=2 から
x^3-x^2-k^2-2kx=2
x^3-x^2-k^2=2kx+2
x^2(x-1)-k^2=2(kx+1)
{x^2(x-1)-k^2}/2=(kx+1)…‥①
①より、x^2(x-1)は
xが偶数でも奇数でも偶数なので、
kは偶数に限定される
したがって、(kx+1)は
xが偶数でも奇数でも奇数となる
(kx+1)は奇数なので、
左辺{x^2(x-1)-k^2}/2のx^2(x-1)-k^2は、
奇数の二倍となる
kは偶数なのでk≧2、k^2≧4
x^2(x-1)≧5なので、x≧3
x≧4のとき、x^2(x-1)は4の倍数
k^2は4の倍数なので、
x^2(x-1)-k^2は4の倍数
4の倍数を2で割ると偶数なので、
{x^2(x-1)-k^2}/2は偶数
(kx+1)が奇数であることと矛盾
x=3のときのみ、
x^2(x-1)は2の倍数となる
2の倍数から4の倍数を引いて
2で割ると、奇数となる場合が存在する
ので、(kx+1)が奇数であることと
矛盾しない
∴整数解は、k=2,x=3

840:132人目の素数さん
23/05/21 18:36:53.53 +aSCXQBZ.net
5²(5-1),7²(7-1),9²(9-1)

841:132人目の素数さん
23/05/23 07:24:19.33 HiEyUgpY.net
>>804
200回中58回アタリがでているから29という計算もありうるが、
それだと実験による分布の情報を捨てている。
想定解は
アタリの個数をmとして
実験値と理論値の確率の残差平方和をグラフにすると
URLリンク(i.imgur.com)
これが最小になるのはm=28のときになる。

842:132人目の素数さん
23/05/23 11:28:50.21 7JZRAqNn.net
尿瓶こんなところにいたのか

843:132人目の素数さん
23/05/23 12:54:38.72 HiEyUgpY.net
シリツ卒の尿瓶チンパポンコツフェチがこんなところにもいたなぁ。
どこの国立落ちたの?

844:132人目の素数さん
23/05/23 13:14:40.81 7JZRAqNn.net
尿瓶ジジイ今度は小学生相手にイキってんのか
でも小学生にも脳内合格通知書は通


845:用しないぞw



846:132人目の素数さん
23/05/23 19:00:13.93 7vI0kknq.net
>>810
でどこの国立を落ちたの?
シリツ卒なんだろ?
母校に誇りはないのかよ?

847:132人目の素数さん
23/05/23 19:18:05.61 jsDoHDBi.net
>>811
尿瓶高校生にすら相手にされず今度は小学生相手にイキってんのか
結局同じことだぞw

848:132人目の素数さん
23/05/23 19:25:46.57 nskOIqOK.net
小中学校の質問スレです。

小さい子も見てるかもしれないからケンカはやめて。お願い。

849:132人目の素数さん
23/05/24 06:00:23.55 /tTJItDL.net
>>813
小中学生も東京大学に受かるように頑張ろうね。
出身校を言えないような大学に言ったら性格が歪んでしまうからね。

850:132人目の素数さん
23/05/24 06:42:49.23 /tTJItDL.net
>>807
アタリ個数と回数の実測値のヒストグラムにm=28とm=29のときの超幾何分布での理論値を重ねてグラフ化
URLリンク(i.imgur.com)

851:132人目の素数さん
23/05/24 06:48:55.74 4Gku+3ti.net
尿瓶ジジイみたいな脳内東大生()になるやつなんかそうはいないから安心しろ
今度は小学生にバカにされたいかw

852:132人目の素数さん
23/05/24 07:07:51.41 /tTJItDL.net
シリツ卒なんだろ?
母校に誇りはないの?

853:132人目の素数さん
23/05/24 07:08:48.77 ee7MjjLj.net
>>817
脳内学歴に誇りもクソもないだろ尿瓶w

854:132人目の素数さん
23/05/24 07:10:49.87 /tTJItDL.net
東大合格者って年間3000人、医師は年間9000人が誕生。
別に羨むほどのものじゃなかろうに。
羨ましいなら再受験すればいいのに。
俺の同期は2-3割は再受験組だった。大半は東大卒か京大卒。
歯学部には東大数学科卒もいた。
医学部にシリツ卒の再受験組はいなかったなぁ。
医師が羨ましくてしかたないらしいな。
医師板にまで出かけていく暇があれば再受験の準備でもすればいいのに。
内視鏡スレまで荒らしに行っているけど
臨床医でないので内視鏡ネタは皆無でスルーされている。
哀れな椰子だぜ。

855:132人目の素数さん
23/05/24 07:11:13.50 /tTJItDL.net
>>818
で、やっぱりシリツ卒なんだろ?
どこの国立落ちたの?

856:132人目の素数さん
23/05/24 07:51:14.32 MGxbqVY9.net
尿瓶って自称学歴ほざいたところで医師板数学板関係なく誰にも相手にされてないよねw
そして小学生にすらガンスルーされてる模様

857:132人目の素数さん
23/05/24 14:22:04.31 7mx/uYGD.net
>>820
んで、いつになったら脳内じゃないって証明してくれんだ?w

858:132人目の素数さん
23/05/24 20:47:37.07 m9Py6My1.net
シリツ卒は図星だろ

859:132人目の素数さん
23/05/24 21:47:33.46 7mx/uYGD.net
>>823
脳内学歴図星だから医師板でも数学板でもずっと発狂してんだろ

860:132人目の素数さん
23/05/24 22:57:17.71 RCovF3Ly.net
あるサイトで
400×10+2a/10×10-a/10
を約分して
4(10+2a)(10-a)
としているのですが、なぜ10で約分して400が4になるのでしょう?

861:132人目の素数さん
23/05/25 04:51:35.12 Ee7y2uqi.net
>>824
国立卒の人は躊躇いなく卒業大学を答えるんだけどな。
あんたはシリツ卒なんだろ?
母校に誇りはないのかよ。

862:132人目の素数さん
23/05/25 04:56:38.49 Ee7y2uqi.net
東大合格者って年間3000人、医師は年間9000人が誕生。
別に羨むほどのものじゃなかろうに。
進学校なら東大合格者や国立医学部合格者は毎年2桁はいるだろう。
医師が羨ましくてしかたないらしいな。
医師板にまで出かけていく暇があれば再受験の準備でもすればいいのに。
俺の同期は2-3割は再受験組だった。大半は東大卒か京大卒。
歯学部には東大数学科卒もいた。
医学部にシリツ卒の再受験組はいなかったなぁ。
当直スレや内視鏡スレまで荒らしに行っているけど
臨床医でないので臨床ネタは皆無でスルーされている。
哀れな椰子だぜ。

863:132人目の素数さん
23/05/25 06:56:44.19 pAvI6dyi.net
>>827
小中学校の質問スレです。
小さい子も見てるかもしれないからいい加減関係ない書き込みはやめて下さい。お願いします

864:132人目の素数さん
23/05/25 08:49:17.19 99rZ5M8R.net
>>826
で、アンタはいつそのご自慢の合格通知書出すんだよ?

865:132人目の素数さん
23/05/25 08:53:48.62 Fw5oDrDA.net
>>825
四則計算の順番�


866:ノ気をつけろってこと



867:132人目の素数さん
23/05/25 09:19:00.62 HX4pRCpz.net
400×((10+2a)/10)×((10-a)/10)
400×(B/10)×(C/10)
(400×B×C)/(10×10)
(40×B×C)/(1×10)
(40×B×C)/10
(4×B×C)/1
4×B×C
4(10+2a)(10-a)

868:132人目の素数さん
23/05/25 23:54:30.14 X6IwJAFU.net
中学3年のとき数学の先生が解説してくれた「偏差値というものの意味」の話しを思い出したいです。
私はそのときなぜ偏差値という基準で生徒が評価されるのかすごく納得した記憶がありますが、今は
どんな話しだったかも、偏差値というのが何なのかも忘れてしまいました。
その話は、
「国語と数学、どちらのテストも受験者100人、平均点50点だった。
A君は国語80点、数学50点だった。
B君は国語50点、数学80点だった。」 という前提でした。
「A君とB君は、二人とも「1教科で平均プラス30点とった」という意味で引き分けに見える。
しかし、本当にそうだろうか?国語の80点と数学の80点は同じ「凄さ」と言えるだろうか?」
というのが話しの冒頭でした。
ここから、「同じ平均プラス30点でも、見方を変えればぜんぜん価値が違うんだぞ」という話しを展開して
偏差値というものの意味を解説してください。
国語はクラスの半分ちかくが0点でもう半分ちかくが100点だった。
数学はクラスのほとんどが50点だった。 というような話しだったと思います。
いかがでしょう?先生の話はどんなものだったか、みなさん想像つくんじゃないかと思います。

869:132人目の素数さん
23/05/26 14:32:50.63 OAph7+Bs.net
>>832
そもそも偏差値とは、母集団の分布が正規分布(グラフにすると平均付近が一番高い山形)していると仮定したとき、山のどこにいるかを表している。
その例の続きで話をするなら、
国語は点数のバラツキが大きく、数学は小さいということになる。グラフにすると、国語はなだらかな山、数学は尖った山になる。このとき、国語の平均プラス30はたいしたことないが、数学の平均プラス30はとても突出していると言える。よって数学80点の方が偏差値は高くなる。
このバラツキを標準偏差といって、偏差値とは標準偏差に対してどれくらい平均から離れているかを表す指標。

870:132人目の素数さん
23/05/26 15:25:20.36 6wZFyh8J.net
>グラフにすると、国語はなだらかな山

山じゃなくて、窪みだと思う。
0点と100点が同数で、それ以外がほとんどいない訳だから。

871:132人目の素数さん
23/05/26 16:03:55.24 OAph7+Bs.net
>>834
だから「正規分布だと仮定」なんだよ。100点が50人、0点が50人だけなら窪みになるが、同じテストをもっと大量に受け、全体が正規分布に近づいたとして、80点ならこの辺りってのが偏差値。

872:132人目の素数さん
23/05/26 17:07:56.98 jeHxhrIF.net
零点と百点が半々と言ってるのになぜか尖った山だと言い出す>>833
誰も正規分布の話などしてないのになぜか正規分布と決め付ける>>833
明らかに窪んでるのに正規分布と言い張る>>833
窪んでるので分散が大きいはずなのに小さいと思ってる>>833

873:132人目の素数さん
23/05/26 17:19:58.55 OAph7+Bs.net
>>836
尖ってるのは数学の方。国語の方が分散が小さいとは一言も言ってない。>>833をちゃんと読んでくれる?
あんたこそ分散、標準偏差が大きいほうが尖った山だと勘違いしてない?

失礼な物言いに返事するのはこれは最初で最後だからね。

874:132人目の素数さん
23/05/26 17:31:14.44 jeHxhrIF.net
>>837
ああすまん 尖ってるのは数学の方だった
しかし国語の得点が正規分布に従うと勝手に妄想するのは間違いだよ

875:132人目の素数さん
23/05/26 17:34:38.43 6wZFyh8J.net
前提を無視しちゃまずいんじゃないの?

このクラスは、国語の場合、超絶バカと超絶カシコしかいない2極化状態ってことでしょ?
そんな環境において、A君はどちらでもないレア人間であり、今回のテストではやや超絶カシコ寄りの
点数を採ったということじゃん。

>正規分布になっていると過程

これがすでに前提無視。

876:132人目の素数さん
23/05/26 17:38:07.36 6wZFyh8J.net
偏差値の説明の話としては不向きな題材かな。

算数80点の子 = みんな50点付近なのによく80点も採れたな、君はクラスでトップかもしれんな
国語80点の子 = たしかに君は平均より30点も高い。でも100点の子がたくさんいるからなあ

偏差値関係なく、どちらが凄いかわかってしまう。

877:132人目の素数さん
23/05/26 17:51:20.27 xD+1GeP9.net
横から通りすがってみる
確かに「偏差値とは?」と偏差値の意義を説明するのにわざわざ「正規分布でない変わった分布」持ち出すのは辺な話だわな
偏差値は正規分布してるもの同士でもちゃんと意義ある量なんだから
元の先生の話で「偏差値の意義説明するのに分布が辺な形してる分布を例として持ち出した」ところからもう話が脱線してる

878:132人目の素数さん
23/05/26 18:45:57.16 OAph7+Bs.net
山を想像して欲しかったから正規分布と軽々に言ってしまったのは間違いだったな。お詫びして訂正します。
でも、今回の国語みたいな極端な例でも別に不適当とは思わないけど。実際国語の80点は偏差値56(計算の単純化のため本人は平均に含めてない)ということになるが、これは平均点50、標準偏差10のテストで56点とるのと同じくらいすごいという意味だからね。ちなみに数学は80点だと偏差値は150くらいになる。

879:132人目の素数さん
23/05/26 23:20:20.56 PJ8EfMzy.net
尿瓶また小学生にバカにされたいみたいだね

880:132人目の素数さん
23/05/27 19:31:24.26 B+lhsVFx.net
>>826
おい尿瓶クソジジイ
さっさと脳内合格通知書出せよ

881:132人目の素数さん
23/05/29 19:45:47.48 m3KYI/5H.net
>>844
あんたはどこの国立を落ちたんだ?
シリツ卒なんだろうが、母校に誇りはないの?

882:132人目の素数さん
23/05/29 19:47:05.75 m3KYI/5H.net
正規分布って負の値も定義域にあるから
現実的に正規分布に従う変数って誤差くらいじゃないかな?

883:132人目の素数さん
23/05/29 22:04:37.29 1x5XYC/g.net
>>845
アンタの脳内学歴は何の意味があるんだ?

884:132人目の素数さん
23/06/06 18:34:17.48 9X2BzgQk.net
よろしくお願いします。

885:132人目の素数さん
23/06/06 18:45:16.49 9X2BzgQk.net
すいません途中で書き込んでしまいました。
他店でA円で売っているものをB%増しの価格で
ポイントB%付きで買う場合、実質いくらで買ったことになるか?
Bが変わった場合にどのようになるか式で表せ。
という問題です。
例えば他店で10000円のものをポイント10%の場合なら、
この店では11000円でポイント1000円がつくので、
11個買えば121000円でポイント11000円なのでポイントで
もう1個買えるため、
トータルでは121000÷12=10083円となることはわかりますが、
この関係をBが変わったときにどんな式になるのか解りません。
どう考えたらいいでしょうか?

886:132人目の素数さん
23/06/06 19:48:11.53 23vNq4m8.net
>>849
手元にポイント1000円残っているから
121000 - 1000=120000
実質120000÷12=10000円ではないの?

887:132人目の素数さん
23/06/06 19:51:24.44 Wn/KimSY.net
Nage

888:132人目の素数さん
23/06/06 20:40:04.02 FrMSgAP4.net
>>849の通りの式を作ると
(AB/100 + 2A + 100A/B) (B/(2B+100))
になった。展開すると
AB^2/(200B+10000) + 2AB/(2B+100) + 100AB/(2B^2+100B)

889:132人目の素数さん
23/06/07 20:29:55.79 A0isUarp.net
>>849
>>850の通りの解釈が正しいのならBの値に関わらず常に実質A円で買ったことになる



891:132人目の素数さん
23/06/09 12:34:12.06 lKzyriHV.net
848です。レスありがとうございます。
851さんへ
その式って、どう考えて立てたのですか?
よろしければ、どう考えたかを教えていただけませんか?

892:851
23/06/13 22:03:14.72 KuMxgnHQ.net
>>854
無理矢理>>852に書いてみたけど多分>>849の時点で間違ってる
>この店では11000円でポイント1000円がつくので、
と書いてあるけど、11000円ならその10%だからポイントは1100円。
フォーマットを合わせると
他店でA円のものをポイントB%の場合なら、
この店ではAB/100 + A円でポイントAB^2/10000 + AB/100円がつくので、
100/B個買えばA + 100A/B円でポイントAB/100 + A円なのでポイントで
もう1個買えるため、
トータルでは(A + 100A/B) ÷ (1 + 100/B) = A円となる
実質A円で買ったことになる

893:132人目の素数さん
23/06/19 07:55:22.34 DbAEALfC.net
>>853
これで良さげ

894:132人目の素数さん
23/06/22 20:24:32.61 iNb+rI7h.net
イメージしやすくするために、
この質問の回答を考えてみてください
「10円のものを購入し、
お札を1枚出しました
おつりはいくらでしょう?」

「おつりがあるかないかはわからない、
というか答えは無い」という答えでも
間違いではないと思います

ただし普通なら
「1000円札なら990円」とか、
「どのお札ですか?」と聞き返しますよね

自然数の最大値-1
(あるかはわからん、てか無い)
これも同じです
自然数の体系(違いは最大値)は複数あり、
複数の自然数の最大値-1は
答えようがないですが、
ある自然数の最大値-1は存在します

895:132人目の素数さん
23/06/28 07:03:38.73 8Mjvl/Oj.net
中3子供が相似が理解出来ないと言います
どのように考えればよいかアドバイスお願いします
主に三角形と平行四辺形、台形の相似です
模範解答を見れば理解できますが自分で答えを導きだせないです
関数や他数字の問題はわりと得意ですが図形に関するものが苦手なようです

896:132人目の素数さん
23/06/28 08:27:11.12 SaBlc4bB.net
ただ相似条件を覚えれば良い気もするが
問題集沢山やればいいんでない?

897:132人目の素数さん
23/07/23 07:20:01.60 CBDT8fL7.net
-160.

898:132人目の素数さん
23/07/30 23:58:25.86 CHIIXd0W.net
>>4
終域とは、写像が出力する値が属するべき集合のことです。値域とは、写像が実際に出力する値の集合のことです。

終域と値域の差が生じるのは、写像が終域の全ての元に対応する元を持たない場合です。つまり、写像が全射でない場合です。

具体的な関数で例を挙げますね。

例えば、実数全体から実数全体への関数 f(x) = x^2 を考えます。この関数の終域は実数全体の集合 R ですが、値域は非負実数全体の集合 R+ です。なぜなら、x^2 は負にはならないからです。

このように、終域と値域の差は、関数が出力しない値の集合を表します。 この差を余域と呼ぶこともあります。

899:132人目の素数さん
23/08/07 21:32:38.31 i+bhAoiN.net
Y=1/2X²のグラフ上の0<X<6の部分を動く点PとY軸上の点A(0、18)を結ぶ直線がX軸と交わる点をQとする
①△AOPの面積27のとき
直線APの式は→-9/2X+18と出ました
△POQの面積はいくつ?→9と出ました
②△POQの面積が△AOPの面積の2倍のときの点Pの座標は?→これわかりません

900: 【豚】
23/08/08 00:58:19.13 irLsbdjp.net
>>761
>>862
P(p,1/2p^2)とおくと、
△AOP=27だからp=27×2÷18=3
P(3,1/18)
直線APの式は傾きが(1/18-18)/3=1/54-6=-323/54だから、
y=-323x/54+18
△POQ=(1/2)OQ(Pのy座標)
=(1/2)(54・18/323)(1/18)
=27/323
△POQ=2△AOP
P(p,1/2p^2)
APの方程式はy=(1/2p^2-18)x/p+18
Qの座標はy=0のときx=36p^3/(36p^2-1)
Q(36p^3/(36p^2-1),0)
△POQ=(1/2){(36p^3)/(36p^2-1)}(1/2p^2)
=9p/(36p^2-1)
△AOP=(1/2)18p=9p
36p^2-1=1/2
36p^2=3/2
p^2=1/24
p=√6/12
P(√6/12,12)

901:132人目の素数さん
23/08/08 07:04:24.65 0t86gS6S.net
朝飯前に作図の練習
面積
URLリンク(i.imgur.com)
面積比
URLリンク(i.imgur.com)

URLリンク(i.imgur.com)
練習問題
△POQの面積が△AOPの面積と等しくなるときのpの座標は?

902:132人目の素数さん
23/08/08 16:24:56.39 37ACiF6g.net
>>863
作図での値と異なるようだが。

903:132人目の素数さん
23/08/08 16:36:36.28 4OUyqzqA.net
>>865
862の答えが違う

904:132人目の素数さん
23/08/09 05:31:11.50 pjLq4m8F.net
>>864
作図に使った方程式から導くとP(2√6,12)

905:132人目の素数さん
23/08/09 06:52:50.83 pjLq4m8F.net
複素平面上で四角形の対角線の交点を求める関数
> intsect
function(a,b,c,d){
a1=Re(a) ; a2=Im(a)
b1=Re(b) ; b2=Im(b)
c1=Re(c) ; c2=Im(c)
d1=Re(d) ; d2=Im(d)
if((a2-b2)*(c1-d1)==(a1-b1)*(c2-d2) | (a-b)*(c-d)==0) return(NULL)
if(a1==b1 & c1!=d1) return( a1+1i*((d2-c2)/(d1-c1)*(a1-c1)+c2) )
if(a1!=b1 & c1==d1) return( c1+1i*((a2-b2)/(a1-b1)*(c1-a1)+a2) )
p=(a2-b2)/(a1-b1)
q=(c2-d2)/(c1-d1)
x= ((p*a1 - a2) - (q*c1 - c2))/ (p-q)
y= p*x - (p*a1 - a2)
return( x + 1i*y )
}
判別式b^2-4acみたいのもので、
こういう小道具を作っておくと作図が効率化できる。
まあ、数値解にしかならんけど。実用上はそれで困らない。

906:イナ ◆/7jUdUKiSM
23/08/09 10:30:11.63 NIreWgEc.net
>>863
>>864
y=1/2x^2じゃないのかい?
y=x^2/2になってる。
問題の表記と解釈に問題がある。
y=(1/2)x^2なら括弧が要る。
括弧がないなら反比例のグラフ。
括弧があるなら放物線のグラフになる。

907:132人目の素数さん
23/08/09 14:13:27.20 GFcgO8Fq.net
>>869
y=1/(2x^2)だと
?△AOPの面積27のとき
直線APの式は→-9/2X+18と出ました
△POQの面積はいくつ?→9と出ました
が成立しない。

908:132人目の素数さん
23/08/09 14:17:28.82 GFcgO8Fq.net
Wolframに
Y=1/2X²のグラフ
と入力したときの解釈
URLリンク(www.wolframalpha.com)

909:イナ ◆/7jUdUKiSM
23/08/09 15:27:03.88 NIreWgEc.net
>>869
>>870
もともと間違えてはるんだよ。
それかもともと間違えてましたって設定か。

910:イナ ◆/7jUdUKiSM
23/08/09 16:56:46.94 Cbqhk4HO.net
>>872
>>862
Y=(1/2)X^2として解く。
P(p,p^2/2)とおくと、
△AOP=27だからp=27×2÷18=3
P(3,9/2)
直線APの式は傾きが(9/2-18)/3=-27/6=-9/2だから、
y=-9x/2+18
△POQ=(1/2)OQ(Pのy座標)
=(1/2)4(9/2)
=9
△POQ=2△AOPについて、
APの方程式はy=(p^2/2-18)x/p+18
Qのx座標はy=0のとき0=(p^2/2-18)x/p+18
(18-p^2/2)x/p=18
x=18p/(18-p^2/2)
=36p/(36-p^2)
Q(36p/(36-p^2),0)
△POQ=(1/2)OQ(Pのy座標)
=(1/2){36p/(36-p^2)}(p^2/2)
=9p^3/(36-p^2)
△AOP=(1/2)18p=9p
△POQ=2△AOPだから、
9p^3/(36-p^2)=18p
p^2/(36-p^2)=2
p^2=72-2p^2
3p^2=72
p^2=24
p=2√6
p^2/


911:2=12 ∴P(2√6,12)



912:132人目の素数さん
23/08/09 18:05:00.81 BG7xvSi+.net
おまえらバカなのか?

>>862
>> ②△POQの面積が△AOPの面積の2倍のときの点Pの座標は?

この△POQと△AOPは高さが同じなのだから
面積が2倍ということは2AP=PQってことだぞ
そしてAy=18とQy=0が判明してるからPy=12がすぐに確定
y=x^2/2だからPx^2=24
つまりP=(Px, Py)=(2√6, 12)

913:132人目の素数さん
23/08/09 18:14:32.60 ieCi+gjo.net
>>873
ごめいさん

914:132人目の素数さん
23/08/09 23:41:11.48 BG7xvSi+.net
面積な何倍とか同じとかあるいは求めよとかの問題は
その面積自体を計算するのは遠回りであることがほとんどで
(必要なら補助線を引いて)単なる比として用いるパターンか
あるいは(必要なら補助線を引いて)面積を組み合わせたり入れ替えたり別の形を作るパターン

915:132人目の素数さん
23/08/10 07:26:47.84 H/iWGn2m.net
むしろ面積を実際に計算したら負け
このスレでもそうなってる

916:132人目の素数さん
23/08/10 09:53:50.60 Mw1HqWJE.net
正しい数値が出せればそれで十分。
勝ち負けを競っているわけじゃなし。
皮膚科の進級試験は教科書ノート持ち込み可だった。
正しい診断と治療ができればその過程は問わないというのが、
当時の皮膚科のK教授の哲学だった。
こういうのは作図できれば計測できる。
長さが2,3,4,5,6,7の6本の線分を組み合わせて最も鋭利な頂点をもつ三角錐を作る。
底面を三角形ABC、頂点をDとし頂点Dが最も鋭利とする。
(1)∠ADB+∠BDC+∠CDAは何度か?
(2)その三角錐の高さを求めよ
(3)その三角錐の体積を求めよ。
(4)その三角錐を図示せよ。
いずれも数値は有効数字3桁でよい。
あらゆるリソースを用いてよい、ネットで答を聞いてもいいし
東大卒に聞いてもよい。

917:132人目の素数さん
23/08/10 09:56:04.11 Mw1HqWJE.net
指折り数える、作図して計測する、実験してみる。
これは応用が効く。
指が足りないとか紙が足りないなら、道具(プログラム)を使えばよい。
定理や公式も道具。九九だって道具といえる。

918:イナ ◆/7jUdUKiSM
23/08/13 01:52:31.94 IcbYUJt3.net
>>873
>>878(1)8.37°
∠ADB+∠BDC+∠CDA
足してんのにそんなとんがっとるか?

919:イナ ◆/7jUdUKiSM
23/08/13 04:29:20.83 IcbYUJt3.net
>>880
もっとも尖ったやつってのは、
高さもそんなないし、
体積もちっさいんだよ。
なんかわかってきた。

920:132人目の素数さん
23/08/13 05:34:30.95 cES63u1X.net
>>878
竹櫛と粘土での工作は面倒だなと思って
思いついた問題。
長さ2+3+4+5+6+7=27の針金を折り曲げて求める三角錐が作れるか?
作れないなら何箇所切断する必要があるか?

921:132人目の素数さん
23/08/13 06:32:05.92 ji2lFNSS.net
>>878
実験結果
(4) URLリンク(i.imgur.com)

922:イナ ◆/7jUdUKiSM
23/08/13 08:51:51.54 kUJUjK6b.net
>>881
>>887
AB=2,BC=3,CA=4,CD=5,AD=6,BD=7のとき、
余弦定理より、
cos∠ADB=(36+49-4)/(2・6・7)=81/84=27/28
=0.96428571428571……
=cos15.358885580°
cos∠BDC=357=(25+49-9)/(2・5・7)=65/70=13/14
=0.9285714285714……
=cos21.786789298°
cos∠CDA=456=(25+36-16)/(2・5・6)=45/60=3/4
=0.75
=cos41.409622109°



923:∠ADB+∠BDC+∠CDA=15.358885580°+21.786789298°+41.409622109° =78.555296987° ≒78.6°



924:132人目の素数さん
23/08/13 08:54:33.59 kUJUjK6b.net
>>883
データ通信量の関係で上旬じゃないとむり。

925:イナ ◆/7jUdUKiSM
23/08/13 08:55:35.50 kUJUjK6b.net
>>883
データ通信速度の関係で上旬じゃないと開かない。

926:132人目の素数さん
23/08/13 09:34:23.28 ji2lFNSS.net
>>884
作図プログラムでの想定解

$Vol 体積
[1] 3.455069

$S 表面積
[1] 26.06022

$s 底辺の面積
[1] 2.904738

$h 高さ
[1] 3.56838

$apex 最鋭頂点の内角の和
[1] 74.75361

927:132人目の素数さん
23/08/13 09:44:51.73 pxrsbe9Q.net
>>884
辺の長さを以下にしたときの方が鋭角になるはず。
> pm[imin,]
AB BC CA DA DB DC
[1,] 2 3 4 6 5 7
[2,] 3 2 4 7 5 6
[3,] 4 2 3 7 6 5
[4,] 4 3 2 6 7 5

928:132人目の素数さん
23/08/13 09:51:13.28 pxrsbe9Q.net
>>885
では、静止画像をアップロード
URLリンク(i.imgur.com)

929:イナ ◆/7jUdUKiSM
23/08/13 11:03:30.85 kUJUjK6b.net
>>878
>>884(1)訂正。
AB=2,BC=3,CA=4,CD=7,AD=6,BD=5とすると、
余弦定理より、
cos∠ADB=(36+25-4)/(2・6・5)=57/60=19/20
=0.95
=cos18.194872338°
cos∠BDC=(25+49-9)/(2・5・7)=65/70=13/14
=0.9285714285714……
=cos21.786789298°
cos∠CDA=(49+36-16)/(2・7・6)=69/84=23/28
=0.82142857142857……
=cos34.7719440345°
∴∠ADB+∠BDC+∠CDA=18.194872338°+21.786789298°+34.7719440345°
=74.7536056705°<78.555296987°
∴74.8°

930:132人目の素数さん
23/08/13 14:06:06.71 cES63u1X.net
>>890
想定解と合致!
お疲れ様でした。

931:132人目の素数さん
23/08/13 18:51:24.73 Rdm4D/eS.net
j

932:イナ ◆/7jUdUKiSM
23/08/14 13:24:18.87 qzxajEMM.net
>>890
加法定理からcos(∠ADB+∠BDC+∠CDA)を出すのが味噌で、
むしろこれこそ答えにするべき。
{(247+9√13)/280}(23/28)+[√{280^2-(247+9√13)^2}/280]{√(28^2-23^2)/28}
結局cosの値から角度を当てることは人力ではできない。

933:イナ ◆/7jUdUKiSM
23/08/14 17:07:26.31 qzxajEMM.net
>>893訂正。
{(247+9√13)/280}(23/28)-[√{280^2-(247+9√13)^2}/280]{√(28^2-23^2)/28}

934:132人目の素数さん
23/08/14 17:21:11.91 r6O4httb.net
ここは小中学校範囲のスレ
加法定理は論外
>>874のような単純なことに気付けば簡単な計算で求まる問題が対象

935:132人目の素数さん
23/08/14 18:19:08.72 yBvcpzZq.net
小中学生で問題の意味が分かれば解法は問わなくていいと思う。
小中学生に飲酒は禁止だが加法定理は禁止ではない。

936:132人目の素数さん
23/08/14 18:24:51.90 yBvcpzZq.net
こういうのもこのスレで扱っていいと思う。
ナニワ金融道より
(まあ概算値ではあっているのだが、厳密値としては正しくない)
URLリンク(i.imgur.com)
高畑社長「ワシらの法定金利40%で月々25万ずつ25年ローンで返済するとして借りられる元金はなんぼや?」
灰原「750万です]
年利40%なので月利は40/12=3.333%
750万のひと月分の利息は750万の3.333%で25万
25万ずつの返済では元金が全く減らないので100年返済しても完済できない。
正しい答は?

937:イナ ◆/7jUdUKiSM
23/08/16 13:36:41.25 Sb4ITZG2.net
>>894
>>878(2)
点Dから△ABCを含む平面上に下ろした垂線の足をHとし、
DH=hとすると、
(117^2-234h^2+h^4)(17・45^2-15・64h^2)
=9(675+59h^2-5h^4)^2

938:イナ ◆/7jUdUKiSM
23/08/16 16:37:24.36 dGjPx8g5.net
>>898
>>878(2)
75h^8-1450h^6-63027h^4+27420


939:5950h^2-16086600=0 計算ミスするだろう。



940:132人目の素数さん
23/08/16 23:32:27.63 dWb3+yQV.net
>>898
Bを原点、BCをx軸に置いて底面の三角形ABCの座標を確定
三角形ABCの各頂点を中心とする3つの球の交点を連立方程式を解いてDの座標を確定というのをプログラムにやらせた。
Dのz座標が高さなので体積が出せる。

941:イナ ◆/7jUdUKiSM
23/08/17 11:50:42.53 f3geTCKW.net
>>899
>>883松屋で見たよ。
めっちゃ鮃やね。
>>878(2)
A(-√(4-a^2),a)
B(0,0)
C(3,0)
AC^2={3+√(4-a^2)}^2+a^2=16
9+6√(4-a^2)+4-a^2+a^2=16
2√(4-a^2)=1
4(4-a^2)=1
4a^2=15
a=√15/2
A(-1/2,√15/2)
D(b,c,h)とおくと、
AD^2=36より(b+1/2)^2+(c-√15/2)^2+h^2=36
BD^2=25より
CD^2=49より

942:イナ ◆/7jUdUKiSM
23/08/17 14:13:30.90 l+gWLcci.net
>>901
>>878(2)
A(-√(4-a^2),a)
B(0,0)
C(3,0)とおくと、
AC^2=16より{3+√(4-a^2)}^2+a^2=16
9+6√(4-a^2)+4=16
2√(4-a^2)=1
4(4-a^2)=1
4a^2=15
a^2=15/4
a=√15/2
A(-1/2,√15/2)D(b,c,h)と
D(b,c,h)とおくと、
AD^2=36より(b+1/2)^2+(c-√15/2)^2+h^2=36
BD^2=25よりb^2+c^2+h^2=25
CD^2=49より(b-3)^2+c^2+h^2=49
-6b+9=24
-6b=15
b=-5/2
-5/2+1/4-c√15+15/4=11
c√15=-5/2-7=-19/2
c=-19√15/30
h^2=25-25/4-361/60=(1125-361)/60=764/60=191/15
h=√(1910+955)/15
=√2865/15
=3.56837965095……
≒3.57
(3)三角錐の体積をVとおくと、
V=(1/3)(3√15/4)h
=h√15/4
=√191/4
=3.45506874027
≒3.46

943:132人目の素数さん
23/08/17 18:16:12.58 HnzGW4Xa.net
>>900
4点ABCDの座標がわかれば
A-D
B-D
C-D
の、3×3行列を作って
行列式の絶対値/6で四面体の体積がだせる。

俺はこれで計算させた。
ABCD2V <- function(A,B,C,D){ # 四面体ABCDの体積
v=rbind(A,B,C,D)
abs(det(rbind(v[1,]-v[4,],v[2,]-v[4,],v[3,]-v[4,])))/6
}

944:132人目の素数さん
23/08/17 21:10:42.62 HnzGW4Xa.net
帝国金融の金畑社長に
1億円の値打ちがある人間と認められるためには
月々いくら返済できればよいか?
URLリンク(i.imgur.com)

電卓片手に手計算では無理だが、エクセルのマクロくらい小中学生でも組めると思う。
こういう計算ができないと騙されてアドオン方式のローンを組む羽目になる。
【ビッグモーター】ウソだらけローン契約 「強制」金利9.9%で120回払い ★4 [ぐれ★]
スレリンク(newsplus板)

945:132人目の素数さん
23/08/19 01:58:15.25 ek/paDCJ.net
↓こちら某高校の入試問題の一部(平面図形)なのですが、はっきり言って難しいです。ちなみにこれを受けた年の合格者正答率は0%なそうな。当然私も解けてないので手助け願います。
URLリンク(uploda1.ysklog.net)

AB=3,BC=5の紙がある。BC上にBE=4cmとなるように点Eをとり、DがEを重なるように紙を折り返した。
折り返した辺を線分AFとする。
(1)△AEFの面積を求めよ。

(2)(1)の状態から、AD上にAG=1となるようにGをとり、BがGに重なるように紙をを折り返した。
?EFとCGの交点をHとするとき、FHの長さは何cmか求めよ。
?紙が三枚だけ重なっている部分の面積を求めよ。

(3)(1)の状態から、AD上にAG=4となるようなGを取り、CがGと重なるように紙を折り返した。
点E,Fが移った点をそれぞれH,Iとする。
点J,K,L,M,Nについては画像の図3を参照。
?点LからBCに垂線LPを引く。LPの長さを求めよ。
?LMの長さを求めよ。
?HJの長さを求めよ。
?紙がある部分の面積を求めよ。

946:132人目の素数さん
23/08/19 02:01:38.00 ek/paDCJ.net
>>905
なお自分が解けたのは(1)、(2)①、(3)①,②のみです。

947:132人目の素数さん
23/08/19 09:25:46.31 gepWyr98.net
作図して計測という王道で算出
まず、
A=3i
B=0i
C=5+0i
D=5+3i
E=4+0i
F=5+1i*perpendicular_bisector(D,E)(5)
F
ABC2S(A,E,F) |> fractions()
> ABC2S(A,E,F) |> fractions()
[1] 25/6
東大卒の検証を希望します。

948:132人目の素数さん
23/08/19 09:32:28.46 gepWyr98.net
作図して計測という王道で算出
まず、
A=3i
B=0i
C=5+0i
D=5+3i
E=4+0i
F=5+1i*perpendicular_bisector(D,E)(5)
F
ABC2S(A,E,F) |> fractions()
> ABC2S(A,E,F) |> fractions()
[1] 25/6
東大卒の検証を希望します。

949:132人目の素数さん
23/08/19 09:33:39.60 gepWyr98.net
H=intsect(E,F,C,G)
>abs(F-H) |> fractions()
[1] 16/15

950:132人目の素数さん
23/08/19 10:02:00.51 gepWyr98.net
昼飯前におもちゃ箱(関数詰め合わせ)から作図
URLリンク(i.imgur.com)
> ABC2S(A,E,F)-ABC2S(A,Q,R)-ABC2S(S,F,T)-ABC2S(V,U,E) |> fractions()
[1] 164/75
東大合格者の検算を希望します。

951:132人目の素数さん
23/08/19 11:02:54.18 gepWyr98.net
連立方程式を解いて作図
URLリンク(i.imgur.com)
Im(L)
abs(L-M)
abs(H-J)
ABC2S(A,J,K)+ABC2S(B,J,M)+ABC2S(J,G,M)+ABC2S(I,G,M)
> Im(L) ①点LからBCに垂線LPを引く。LPの長さを求めよ。
[1] 0.9230769
> abs(L-M) ②LMの長さを求めよ。
[1] 1.824391
> abs(H-J) ③HJの長さを求めよ。
[1] 0.5384615
> ABC2S(A,J,K)+ABC2S(B,J,M)+ABC2S(J,G,M)+ABC2S(I,G,M) ④紙がある部分の面積を求めよ。
[1] 5.237179
厳密解(分数解)が投稿されたら照合してみようと。
東大卒の検証を希望します。
既存のおもちゃ箱の中の道具が使えたので新たな車輪再発明はできなかったが、
作図のトレーニングにはなった。

952:132人目の素数さん
23/08/19 11:04:42.70 gepWyr98.net
>ちなみにこれを受けた年の合格者正答率は0%なそうな
ある公立病院に勤務していたころ、事務長から「先生、職員採用試験の問題を作ってください。誰も解けないような問題をお願いします。」と依頼された。
不思議な依頼だったのでその理由を尋ねたら「誰を採用するかは決まっているので(縁故採用)、試験で差がついたら困るんですよ」と言われた。
世の中の仕組みを知らされた気がした。
試験会場でこれが正解できるような学生に入学されたら困るということだろうな。

953:132人目の素数さん
23/08/19 17:45:21.69 y1/Y0FrM.net
せめてまともなレスかつくまで我慢できんのかね?
人に迷惑かけてるのわがらんのかね?

954:イナ ◆/7jUdUKiSM
23/08/19 18:08:59.53 d+rfvcbg.net
>>902
>>905(1)△AEF=(1/2)AE・EF(1/2)5(5/3)=25/6
FH=(4/5)FC=(4/5)(4/3)=16/15
幅が3/5
長さが5-4/5=21/5
の細長い長方形の面積は(3/5)(21/5)=63/25
直角がEに当たる直角三角形の面積(1/2)1(1/3)=1/6
折り返す部分と4枚重ねの部分と
直角がGに当たる直角三角形の3枚ある。
63/25-3(1/6)=63/25-1/2
=(126-25)/50
=101/50
(最初の休憩)

955:132人目の素数さん
23/08/19 18:42:58.84 vEUumPfq.net
>>911
とりあえず検算

| > Im(L) ①点LからBCに垂線LPを引く。
| LPの長さを求めよ。
| [1] 0.9230769

LP=12/13=0.92307692

956:132人目の素数さん
23/08/19 18:46:51.61 vEUumPfq.net
>>911
とりあえず検算

| > abs(L-M) ②LMの長さを求めよ。
| [1] 1.824391

LM=(15/26)√10=1.82439095

957:132人目の素数さん
23/08/19 19:31:45.17 vEUumPfq.net
>>911
とりあえず検算
| > abs(H-J) ③HJの長さを求めよ。
| [1] 0.5384615
HJ=21/39=0.53846153

958: 【吉】
23/08/20 00:17:05.73 67ltyss0.net
>>914
>>905(3)
A(-5,3),B(-5,0),C(0,0),D(0,3),E(-1,0),F(0,4/3),G(-1,3)



959:とおくと、連立一次方程式を解くことで直線の交点の座標が決まる。 H(-27/15,12/5),J(-29/13,81/39),L(-29/13,12/13),M(-1/2,3/2) ピタゴラスの定理よりLM=√{(-13+58)^2+(39-24)^2}/26 =√(45^2+15^2)/26 =15√10/26 ピタゴラスの定理よりHJ=√{(-27/15+29/13)^2+(12/5-81/39)^2} =√{(435-351)^2+(468-405)^2}/195 =√(84^2+63^2)/195 =√(7056+3969)/195 =√11025/195 =105/195 =21/39 =7/13



960: 【大凶】
23/08/20 00:37:53.13 67ltyss0.net
>>918
>>905(1)△AEF=(1/2)AE・EF(1/2)5(5/3)=25/6
(2)FH=(4/5)FC=(4/5)(4/3)=16/15
幅が3/5
長さが5-4/5=21/5
の細長い長方形の面積は(3/5)(21/5)=63/25
直角がEに当たる直角三角形の面積(1/2)1(1/3)=1/6
折り返す部分と4枚重ねの部分と
直角がGに当たる直角三角形の3枚ある。
∴紙が3枚だけ重なっている部分の面積は、
63/25-3(1/6)=63/25-1/2
=(126-25)/50
=101/50
(3)
A(-5,3),B(-5,0),C(0,0),D(0,3),E(-1,0),F(0,4/3),G(-1,3)
とおくと、連立一次方程式を解くことで直線の交点の座標が決まる。
H(-27/15,12/5),J(-29/13,81/39),L(-29/13,12/13),M(-1/2,3/2)
Lの座標よりLP=12/13
ピタゴラスの定理よりLM=√{(-13+58)^2+(39-24)^2}/26
=√(45^2+15^2)/26
=15√10/26
ピタゴラスの定理よりHJ=√{(-27/15+29/13)^2+(12/5-81/39)^2}
=√{(435-351)^2+(468-405)^2}/195
=√(84^2+63^2)/195
=√(7056+3969)/195
=√11025/195
=105/195
=21/39
=7/13

961:132人目の素数さん
23/08/20 02:04:01.33 K7BM5GFD.net
尿瓶クソジジイ今度は小中学生にもバカにされたいか

962:132人目の素数さん
23/08/20 02:08:21.67 Cinl7pEB.net
高校数学スレより

243:132人目の素数さん:[sage]:2023/07/25(火) 19:35:19.66 ID:hrc4XW/3
6つの辺の長さが3,4,5,6,7,8である四面体は( ア )種類ある。

269:132人目の素数さん:[sage]:2023/07/26(水) 18:45:05.79 ID:sev74d4g
>>244
車輪の再発明の神のお告げによれば、39通り

274:132人目の素数さん:[sage]:2023/07/26(水) 19:22:12.39 ID:pzlYX2uz
鏡像を同じとみなすなら四面体の各辺に3~8の数字をあてがう方法は30通りしかない
同じと見做さないなら答えは偶数

78:132人目の素数さん:[sage]:2023/08/14(月) 13:03:44.28 ID:8HExdy5D
>>68
おい尿瓶リタラシージジイ、これにはダンマリか
神のお告げが完全にトンチンカンだったわけだけど一体どこから出て来たんだよw
また脳内妄想か?w

80:132人目の素数さん:[sage]:2023/08/14(月) 13:45:00.39 ID:aOMMoiEh
>>78
バビンスキー反射をババンスキー反射というみたいなもんじゃね?

963:132人目の素数さん
23/08/20 06:48:50.79 mZqLNEGQ.net
>>917
検算ありがとうございます。
座標がわかっているときの三角形の面積は以下の方法が楽。
座標O(0,0),P(a,b),Q(c,d)のとき三角形OPQの面積は|ad-bc|/2で計算できる。
プログラムでヘロンの公式を使うと平方根で丸め誤差がでるので上記の方が正確。
行列
a b
c d
の行列式の絶対値/2

四面体の体積だと/6だと教わった。

964:132人目の素数さん
23/08/20 06:53:15.18 mZqLNEGQ.net
>東大卒の検証を希望します。
に真摯に答えるのが東大卒。

小中学生は
>920-921みたいな
助言よりも罵倒を喜びとするクズ人間になっちゃだめだぞ。
東大(少なくも国立大学)をめざそうね。

965:132人目の素数さん
23/08/20 09:59:00.22 2EwQ0DMX.net
小さい頃に利口でかわいかったハトコが防衛医大出なのが自慢。

966:132人目の素数さん
23/08/20 10:17:48.03 Cinl7pEB.net
>>923
非東大卒はバカさ加減を指摘されて発狂するしかないみたいだね

967:132人目の素数さん
23/08/20 11:27:15.81 /NuasAXQ.net
尿瓶おまる洗浄係は臨床ネタを投稿できないからコピペで今日も内視鏡スレを荒らしているなぁ。
東大合格できないとあんな人間になるみたい。
どうもシリツ卒のようだ。

968:132人目の素数さん
23/08/20 11:29:24.18 /NuasAXQ.net
>922を使えば紙がある部分を三角形で分割して面積が出せるはず。

969:132人目の素数さん
23/08/20 12:43:42.41 h2gV8Sjt.net
コピペで発狂してるのは尿瓶ジジイだろw
非東大卒は小中学生にバカにされに来たのか?

970:イナ ◆/7jUdUKiSM
23/08/20 13:26:27.26 fqeT0/ef.net
>>919
>>905
二等辺三角形△ABM=(1/2)3


971:(9/2)=27/4 点I(i,-3i+4/3)とおくと、 点F(0,4/3)と直線BM:y=(1/3)x+5/3すなわち x-3y+5=0の距離は、 |0-3(4/3)+5|/√10=1/√10 点I(i,-3i+4/3)と直線x-3y+5=0の距離は、 |i-3(-3i+4/3)+5|/√10=1/√10 |10i+1|=1 10i+1=±1 i=0のときはF(0,4/3)だから、 10i+1=-1 10i=-2 i=-1/5 -3i+4/3=3/5+4/3=29/15 I(-1/5,29/15) 点I(-1/5,29/15)と直線CG:3x+y=0の距離は、 |3(-1/5)+29/15|/√10=(29-9)/15√10 =4/3√10 =2√10/15 点J(-29/13,81/39) と直線CG:3x+y=0の距離は、 |3(-29/13)+81/39|/√10=|81-9・29|/39√10 =|81-261|/39√10 =18√10/39 =6√10/13 GM=√{(1/2)^2+(3/2)^2}=√10/2 四角形MIGJ=△JGM+△IGM =(1/2)(√10/2)(6√10/13+2√10/15) = (√10/2)(3√10/13+√10/15) =5(3/13+1/15) =5(45+13)/195 58/39 多角形ABMIGJ=△ABM+四角形MIGJ =27/4+58/39 =(27・39+58・4)/156 =(1053+232)/156 =1285/156 ∴1285/156 cm^2



972:132人目の素数さん
23/08/20 15:19:09.84 2SOBRDc2.net
なんでイナさんは何も出してないのに勝手に東大卒認定してんだろうな?
自称したら東大卒なのかよマヌケ
まあ尿瓶ジジイが自称学歴とはかけ離れたアンポンタンの非東大卒であることだけははっきりしてるみたいだけど

973:イナ ◆/7jUdUKiSM
23/08/21 12:08:51.75 bZNcbuZJ.net
>>911照合したか?
三枚だけ重なっている部分は5もないら。
2ぐらいだら。

974:132人目の素数さん
23/08/21 13:50:11.97 pGluIYHy.net
928:卵の名無しさん:[sage]:2023/08/21(月) 13:49:21.21 ID:RvGIVLG/
251:卵の名無しさん:[sage]:2023/08/21(月) 06:23:09.87 ID:Co6/jAM1
世の中にはこういう症例報告もあるから独善DNARを選択すると訴訟に巻き込まれ兼ねない。

98歳の急性心筋梗塞に対し経皮的冠動脈形成術を行い救命できた1例
URLリンク(www.jstage.jst.go.jp)
ちなみに4時間ほど人工呼吸器装着したと記載あり。

252:卵の名無しさん:[sage]:2023/08/21(月) 07:58:38.53 ID:dRIKJiX3
>>252
4時間で抜いたんならMIって言ってもそもそもKiilip1だろ
安静保てないから挿管しただけの可能性高いし
高齢者の急変時に挿管することと論点がズレすぎ

254:卵の名無しさん:[sage]:2023/08/21(月) 08:07:51.66 ID:Co6/jAM1
>>253
必要があるから呼吸管理したわけだろ、年齢により適応を判断していない。論点がずれてるのはあんたの方じゃね?

260:卵の名無しさん:[sage]:2023/08/21(月) 12:32:16.79 ID:UmkySA00
>>255
必要があるから呼吸管理したなら4時間後に抜管出来るわけないだろ
心不全じゃなくても挿管することはあるの
それと、105歳に挿管するのとは議論が別
急性期とかちゃんと診たことないの?本当に医者かお前?言動もちらほら怪しいし

975:132人目の素数さん
23/08/21 21:18:17.29 W+UVh2n6.net
>>905
対称と相似によって3:4:5の直角三角形と1:3:√10の直角三角形の2種類が多数出てくるだけの問題ですね
連立方程式を解く必要はありません
(1)
△ABEの面積=4×3/2=6
同じ3:4:5の直角三角形で辺が1/3なので△CEFの面積=2/3
15=□


976:ABCD=△AEF×2+△ABE+△CEF だから △AEF=16/15 (2) 同じく△CEFも3:4:5の直角三角形なので FH=FC×4/5=4/3×4/5=16/15 (3)➀ △BLPが1:3:√10の直角三角形で △ELPが3:4:5の直角三角形だから 4=BE=BP+EP=LP×3+LP×4/3=LP×13/3 なので LP=12/13 (3)➁ △BCM1:3:√10の直角三角形なのでBM=5×3/√10=(3/2)√10 △BLPも1:3:√10の直角三角形なのでBL=LP×√10=(12/13)√10 LM=BMーBL=(15/26)√10=15√10/26 (3)➂ ➀よりEL=LP×5/3=60/39 BH=EF=4 と BJ=AL=AEーEL=5ー60/39 より HJ=BHーBJ=60/39ー1=21/39 多角形は略



977:132人目の素数さん
23/08/23 03:45:52.55 V+cp2Yu3.net
>>931
ご指摘ありがとう。
計算すべきは多角形ABMIGJだった。
図で赤で囲んだ部分
URLリンク(i.imgur.com)

> ABC2S(A,B,M)+ABC2S(G,J,M)+ABC2S(G,M,I)
[1] 8.237179
という値にが返ってきた。

978:132人目の素数さん
23/08/24 16:39:33.00 qQJ+sruW.net
>>905
なにこれ?
DEの垂直二等分線がA通るわけないやん?

979:132人目の素数さん
23/08/24 16:47:52.83 1RoHQH0x.net
URLリンク(itest.5ch.net)
URLリンク(itest.5ch.net)
尿瓶ジジイ>>934脳内医療丸出しでそれを指摘されて顔真っ赤w
よぼよぼの高齢者にも保身のために手術しないとそれは見殺しだと言い出して先生方に総ツッコミで発狂w

980:132人目の素数さん
23/08/25 15:47:55.82 Fr75oXjj.net
教えてください
1/2 + 1/4 + 1/6 + 1/8 + …… 1/100 って、どうやって考えればいいのでしょうか?
また
1 + 1/3 + 1/5 + 1/7 + …… 1/99 も、どうやって考えればいいのか教えてください。

981:132人目の素数さん
23/08/25 16:06:04.41 R2SWnIcD.net
どちらも,簡単に求める方法はありません
ひとつずつ通分するしかありません
1つ目は,調和級数とよばれるものの
定数倍となります
これは簡単な形にならないことがわかっています
2つ目も,同じく簡略化はできません
2つの式の具体的な値は,以下から計算できます
URLリンク(www.wolframalpha.com)
URLリンク(www.wolframalpha.com)

982:132人目の素数さん
23/08/25 16:08:30.77 R2SWnIcD.net
2つ目が3から101だった
正しくはこちら
URLリンク(www.wolframalpha.com)

983:132人目の素数さん
23/08/25 16:23:51.60 Fr75oXjj.net
>>938-939
ありがとうございます。
では、下の式から上の式を引くのも、同様に難しいのでしょうか?

984:132人目の素数さん
23/08/25 17:02:40.46 CLSRiXMd.net
罠がありそうなのでパス
本職の数学の先生に任せよう

985:132人目の素数さん
23/08/26 10:21:08.56 Y4uVna6A.net
47979622564155786918478609039662898122617/69720375229712477164533808935312303556800

986:132人目の素数さん
23/08/26 10:48:57.39 aBJR4kkX.net
2つの有限和の(同数ずつの)差は
メルカトル級数と呼ばれる
理系難関の大学入試によく出てくる
出題者の意図は
無限項の和を求める積分の前処理にあたる
式変形を示して欲しいってことだろう
1-1/2+1/3-1/4+...+1/99-1/100
=1+(1/2-1)+1/3+(1/4-1/2)+...+1/99+(1/100-1/50)
=(1+1/2+...+1/100)-(1+1/2+...+1/50)
=1/51+1/52+...+1/100
有限個の場合、ここからは同じく通分できず
巨大な分母と分子の数になる

987:132人目の素数さん
23/08/26 20:22:52.48 kNroEr9n.net
尿瓶ジジイ>>934のアホレス晒しあげ
11:卵の名無しさん (JP 0H1f-cjuf [217.138.212.122 [上級国民]]):[sage]:2023/08/26(土) 09:46:48.58 ID:W8MGft2zH
術後のケモも薬屋の売り子としてやっていたなぁ。
カイトリルやらイメンドやらも薬屋の推奨のままに売り子をやっていた。
13:卵の名無しさん (JP 0H47-W0Bl [202.253.111.210]):[sage]:2023/08/26(土) 10:32:41.14 ID:9bBOAXyCH
>>11
カイトリルもイメンドもケモの時に使うってだけで制吐剤なんですがwww
術後のケモって抗癌剤だと思ってたの?www
ここまで来るとわざと笑かしに来てるのかと思えるレベルwww
ケモ=化学療法
脳内医者丸出しでございます

988:イナ ◆/7jUdUKiSM
23/08/28 09:39:08.07 LpQ9essu.net
>>931
>>934それは(3)のラストでしょ。
指摘したのは(2)のラスト。
101/50
3枚重なっている部分の面積。

989:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch