23/03/30 23:42:19.57 GGdLLQII.net
正 300 角形の頂点のうち 101 個を選ぶ
組み合わせを考える.
ある点から隣の点までの頂点の個数を数えると
1 周で 101 個の数ができ,和は 300 である.
よって 101 個の数の選び方の集合は,
点のひとつを固定した 101 個の頂点の
選び方と1対1で対応する.
300 個の頂点を,距離 100 個ごとに選んだ
正三角形のグループ 100 個に分ける.
頂点を 101 個選ぶと,同じグループに
含まれる頂点が必ず現れる.
正三角形の各頂点は 100 だけ離れているので,
その間の選ばれた頂点の並びに対応する
整数の列の和は 100 となる.□