22/12/03 10:00:39.60 p35G8Xyi.net
>>81
>mathoverflowのDenis質問、「箱入り無数目」の否定には、これで十分だ
>例えば、Denisの100人バージョンの M0,M1,M2,・・,M99 たち
>これらの各Mi(0<=i<=99)が、確率ε以下だといえるとする
>100個で、確率ε^100 以下となる
>εを十分小さく取れば
>如何なる奇跡の確率よりも小さくできる
>つまり、集合{M0,M1,M2,・・,M99}の存在は奇跡です!w
1は正真正銘の馬鹿www
いかなる列もその決定番号は必ず自然数となる
したがって集合{M0,M1,M2,・・,M99}のうち
他より大きな決定番号をもつ要素が高々1個となるのは全事象!!!
つまり、奇跡でもなんでもないwwwwwww