スレタイ 箱入り無数目を語る部屋6at MATH
スレタイ 箱入り無数目を語る部屋6
- 暇つぶし2ch53:ヘ、三角関数でよく使うが、それで「非可測、お手付き!」って、時枝さん気は確か?) 7)よって、ヴィタリ集合とか選択公理は、いかにもパラドックスが起こりそうな雰囲気づくりの小道具でしかないのです 「数学的には、あまり意味ない」これが結論です (参考) https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合(ヴィタリしゅうごう、英: Vitali set)とはジュゼッペ・ヴィタリ(英語版)(Giuseppe Vitali (1905))によって作られたルベーグ非可測な実数集合の基本的な例である[1]。 構成と証明 有理数体 Q は実数体 R の普通の加法についての部分群を成す。なので加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) は有理数集合の互いに交わらない"平行移動コピー"によって出来ている。この群の任意の元はある r ∈ R についての Q + r として書ける。 R/Q の元は R の分割の1ピースである。そのピースは不可算個あり、各ピースはそれぞれ R の中で稠密である。R/Q の元はどれも [0, 1] と交わっており、選択公理によって [0, 1] の部分集合で、R/Q の代表系になっているものが取れる。このようにして作られた集合がヴィタリ集合と呼ばれているものである。すなわち、ヴィタリ集合 V は [0, 1] の部分集合で、各 r ∈ R に対して v - r が有理数になるような一意的な v を要素に持つものである。ヴィタリ集合 V は不可算であり、 u,v∈V,u≠vであれば v - u は必ず無理数である。 (引用終り) 以上
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch