22/12/16 14:21:14.62 Bc1n6x8o.net
>>482
>未知=確率変数
>との主張が論破されたんだよ 気づけ
"論破"かw
ヒロユキきどりねw
現代確率論で、サイコロとコイン投げの確率は、確定しています。無限回の試行までね(下記)
未確立は、時枝氏>>1の "うさんさい"決定番号ですよw
(参考)
URLリンク(ja.wikipedia.org)
大数の法則
確率論・統計学における基本定理の一つ。公理的確率により構成される確率空間の体系は、統計学的確率と矛盾しないことを保証する定理である。
たとえばサイコロを振り、出た目を記録することを考える。この試行回数を限りなく増やせば、出た目の標本平均が目の平均である 3.5 の近傍から外れる確率はいくらでも小さくなる。これは大数の法則から導かれる帰結の典型例である。より一般に、大数の法則は「独立同分布に従う可積分な確率変数列の標本平均は平均に収束する」と述べられる。
具体例
試行において事象が起こる公理的確率を p とする。さらに、この試行を反復しても、各結果の起こりやすさは変化しない(他の結果に影響を及ぼすことがない)ものとする[2]。この仮定の下で、試行における事象の(起こる)確率は、試行回数を限りなく増やしていったときの、その事象の頻度(発生回数の相対度数)の極限値(統計的確率あるいは経験的確率)はほとんど確実に p に等しくなる。これは大数の法則から導かれる重要な帰結の一つであり、上記の仮定の下で統計的確率は公理的確率に等しいことの数学的な根拠を与える。
たとえばコイントス、特に公正なコイン(ゆがみや偏りがない、完全に対称なコイン)を投げて出た面を記録する試行を行うとする。このとき、表が出る確率と裏が出る確率は等しいと考えられるためともに
1/2
である確率空間になる。このとき、コイン投げの試行回数を限りなく増やすと、表が出る回数と裏が出る回数の比率はどちらも
1/2
に近づく。実際には、試行回数が有限では、各頻度が完全に
1/2
になることはほぼないが、極限値としては各頻度が
1/2
に収束する。これが大数の法則の主張である。