22/12/10 11:50:09.09 6KyrV545.net
100個の数列は固定で、それに対応する決定番号も高々100個。この対応関係を理解できない人は数学ができない以前に文章が読めない。
元記事にはすべてπでもよいなどと定数を入れる旨、これでもかと例示しているのに、それでもサイコロのような変数だと誤解してしまう。
まあ、そのような誤解をするのも仕方ない。高校までに学ぶ確率論は、その例題において分からないもの、見えないもの、確定していないものは必ず確率事象だからね。
事実としてπという定数が書かれたカードを持っているのに(これからサイコロを振るわけではないのに)、そのカードが伏せられて数当てゲームが始まったとき、何も考えず反射的にその数が確率事象であると定式化してしまうのは無理もない。そのカードが無限個あったら無限個独立の事象を考えてしまうだろうね。そう定式化するのは間違いではないし、その人の勝手だけど、時枝記事が考えている戦略とは無関係。
何の確率を論じているのかを取り違えてしまう人は、素朴で雑な理解でもいいから確率空間の定式化を学んでみてはどうかと思う。
時枝記事では、100列のうちどの数列を選ぶか(100面サイコロを振ってどの目が出るか)という確率を考えている。その目のそれぞれが正解不正解に繋がることの論理は確率論ではない。
前者が分からない理由は先述の勘違い。後者を否定する人はスレ主以外にはいない様子。