ミレニアム懸賞問題at MATH
ミレニアム懸賞問題 - 暇つぶし2ch1:132人目の素数さん
22/11/18 19:12:32.92 JmL1qgGA.net
URLリンク(ja.m.wikipedia.org)ミレニアム懸賞問題

1
ヤン–ミルズ方程式と質量ギャップ問題 (Yang–Mills and Mass Gap)
任意のコンパクトな単純ゲージ群 G に対して、非自明な量子ヤン・ミルズ理論が 'R4 上に存在し、質量ギャップ Δ > 0 を持つことを証明せよ。
2
リーマン予想 (Riemann Hypothesis)
リーマンゼータ関数 ζ(s) の非自明な零点 s は全て、実部が 1/2 の直線上に存在する。
3
P≠NP予想 (P vs NP Problem)
計算複雑性理論(計算量理論)におけるクラスPとクラスNPが等しくない。
4
ナビエ–ストークス方程式の解の存在と滑らかさ (Navier–Stokes Equation)
3次元空間と(1次元の)時間の中で、初期速度を与えると、ナビエ–ストークス方程式の解となる速度ベクトル場と圧力のスカラー場が存在して、双方とも滑らかで大域的に定義されるか。
5
ホッジ予想 (Hodge Conjecture)
複素解析多様体のあるホモロジー類は、代数的なド・ラームコホモロジー類であろう、つまり、部分多様体のホモロジー類のポアンカレ双対の和として表されるようなド・ラームコホモロジー類であろう。
6
バーチ・スウィンナートン=ダイアー予想 (BSD予想、Birch and Swinnerton-Dyer Conjecture)
楕円曲線E上の有理点と無限遠点Oのなす有限生成アーベル群の階数(ランク)が、EのL関数 L(E, s) のs=1における零点の位数と一致する。


レスを読む
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch