22/11/06 22:34:18.87 4rX/NHRo.net
>>28
<前スレより関連コピー>
スレリンク(math板:55番)
>>47 補足
(参考)>>1より
時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋
純粋・応用数学(含むガロア理論)8
スレリンク(math板:404番)
さらに、数学セミナー201511月号P37 時枝記事に、次の一文がある
「R^N/~ の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/~ の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」
さらに、過去スレでは引用しなかったが、続いて下記も引用する
「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない.
しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.
(引用終り)
1)>>47で示したように、可算無限列→形式的冪級数→しっぽの同値類=多項式環
(一つの同値類 形式的冪級数τの同値類=τ+多項式環 K[x] とかける("+"は記号の濫用))
2)なので、+多項式環 K[x] 自身は、可測も非可測も関係ない
(関係ないというより、可測あ非可測かで論じる対象ではない)
3)なので、この部分の時枝氏の”お手つき”とか、何を数学的に主張しているのか?
さっぱり、意味不明の陳述を書いているのです。大丈夫かな、この人
4)ポイントは、無限次元空間から100個の有限次元ベクトルを選んで
その有限次元ベクトルたちの”次元の大小”の確率計算で、確率99/100を出して、自慢しているw
それって、正当な数学になっているの?
そこが一番の問題でしょ!