22/11/12 09:42:22.00 nRKohC+j.net
>>231 補足
>>>>7-16の場合、対応する決定番号の写像 d:([0,1)→R) → [0,1) は
>>有界写像なので、上記の屁理屈は使えない。
>>このように、スレ主の屁理屈は>>7-16の前には無力。
補足
1)時枝さん>>1は、決定番号を自然数Nにしたから
自然数Nを一様分布類似と見ると、非正則分布だってこと
(本当は、多項式環の多項式の次数ですが>>17 >>23-25)
2)上記 ”対応する決定番号の写像 d:([0,1)→R) → [0,1)”
では、[0,1)は有界だとしても
決定番号εが取れて、ε→0 とできるよね
かつ、区間[0,1)でεなる一点集合のルベーグ測度は、0でしょ(零集合)
何が言いたいのかな?
確率論が、根本から分かってないのでは?
255:132人目の素数さん
22/11/12 09:42:54.78 r4QYDURa.net
>>232
>簡単に、f(x)=εx+b (0<ε)なる一次関数を考える
>f: [0,1)→[b,b+ε)
>となって、[0,1)を数直線上の任意の区間[b,b+ε)⊂R へ移せるよね
だから?
意味わかんないけど? 工業高校中退ヤンキー
何が言いたいのかな? 中卒の1ことブルシットせたぼん
256:132人目の素数さん
22/11/12 09:45:51.34 r4QYDURa.net
>>233
>決定番号εが取れて、ε→0 とできるよね
しかしε=0にはできないよな?
何が言いたいのかな?
実数の定義が、根本から分かってないな 1ことブルシットせたぼん
さすが工業高校1年中退の中卒
大学1年の4月で習うことが全く理解できない
そりゃ大学卒業できんどころかそもそも入れんわなw
257:132人目の素数さん
22/11/12 10:04:37.74 Wt6BYOwg.net
>>231
>1)ひょとして、確率空間(下記)で、Ω(全事象)を、Ω=[0,1)みたく錯覚してないかな?
> Ω=Map([0,1),R)とすべきでは?
ぜんぜん分かってなくて草
やはりサルに数学は無理だった
258:132人目の素数さん
22/11/12 10:33:41.40 Wt6BYOwg.net
>>233
>2)上記 ”対応する決定番号の写像 d:([0,1)→R) → [0,1)”
> では、[0,1)は有界だとしても
> 決定番号εが取れて、ε→0 とできるよね
いみふw
> かつ、区間[0,1)でεなる一点集合のルベーグ測度は、0でしょ(零集合)
何が言いたいのかな?
>確率論が、根本から分かってないのでは?
数学が根本から分かってないのでは?
259:132人目の素数さん
22/11/12 12:13:46.90 Wt6BYOwg.net
>>231
>1)ひょとして、確率空間(下記)で、Ω(全事象)を、Ω=[0,1)みたく錯覚してないかな?
> Ω=Map([0,1),R)とすべきでは?
↑
確率が根本から分かってないのでは?
>>13
>まず、回答者は、1,2,…,100 からランダムに番号 i を選ぶ。
260:現代数学の系譜 雑談
22/11/12 12:37:15.20 nRKohC+j.net
>>231 補足
> 2)>>120連続とは限らない関数において
> |Map([0,1),R)|=2^アレフ じゃね?
> ここに、アレフ=非可算(連続濃度*)で、2^アレフは連続濃度の上の濃度
1)ルベーグ測度は、アレフ=連続濃度(非可算)に関するものでしょ?(下記)
2)で、連続とは限らない関数 |Map([0,1),R)|=2^アレフ
上には、ルベーグ測度は定義できない!(∵ |Map([0,1),R)|=2^アレフ だから )
3)おっさんの
>>15「回答者は 99/100 以上の確率で何らかの箱の中身の推測に成功する」
って、測度論の裏付け無しじゃんか!www
(参考)
URLリンク(ja.wikipedia.org)
ルベーグ測度(ルベーグそくど、英: Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。
(引用終り)
261:132人目の素数さん
22/11/12 12:59:50.14 Wt6BYOwg.net
>>239
だからそれ以前だと言うとるのに
これだから言葉の通じないサルは始末が悪い
262:132人目の素数さん
22/11/12 15:42:07.19 UXzpThWg.net
時枝記事では、決定番号の写像 d:R^N → N は非有界。
スレ主はこのことを以って「 d には非正則分布の構造が入る」という
屁理屈を展開していた。
しかし、>>7-16では、対応する決定番号の写像 d:([0,1)→R) → [0,1)は
有界である。よって、スレ主はこちらの d に対しては「非正則分布」が使えない。
スレ主がこのことに反論するには、こちらの d に対しても
非正則分布が使えるような新しい説明を与えるか、
あるいは非正則分布とは全く別の説明によって>>7-16に反論しなければならない。
現状では、スレ主はどちらも行っていない。
スレ主、ここで詰み。
263:132人目の素数さん
22/11/12 15:49:24.40 UXzpThWg.net
>1)簡単に、f(x)=εx+b (0<ε)なる一次関数を考える
> f: [0,1)→[b,b+ε)
> となって、[0,1)を数直線上の任意の区間[b,b+ε)⊂R へ移せるよね
別の区間に移したところで有界のままである。
実際、スレ主はそのような変換によって「非正則分布が使える」とは主張していない。
ただ単に「別の区間に移せる」としか言ってない。
264:132人目の素数さん
22/11/12 15:53:08.03 UXzpThWg.net
>2)上記 ”対応する決定番号の写像 d:([0,1)→R) → [0,1)”
> では、[0,1)は有界だとしても
> 決定番号εが取れて、ε→0 とできるよね
意味不明。f: [0,1)→[b,b+ε) という変換をどこに
265:用いるのか全く書いてない。 変換の方法には4種類あり、その結果として (1) d:([0,1)→R) → [0,1) (2) d:([0,1)→R) → [b,b+ε) (3) d:([b,b+ε)→R) → [0,1) (4) d:([b,b+ε)→R) → [b,b+ε) の4種類の d が得られる。ただし、(1)は何の変換も施さない通常の d である。
266:132人目の素数さん
22/11/12 15:57:05.07 UXzpThWg.net
スレ主はε→0 という極限を考えたいようだが、形式的に極限を取った結果は
(1)' d:([0,1)→R) → [0,1)
(2)' d:([0,1)→R) → φ
(3)' d:(φ→R) → [0,1)
(4)' d:(φ→R) → φ
というものになる。(3)',(4)'は定義域が (φ→R) になっているが、
我々は ([0,1)→R) を舞台にして時枝記事の類似を考えていたのであって、
(φ→R) なんぞ舞台にしていない。(2)'については、定義域が ([0,1)→R) という
空でない集合なのに値域がφなので、そんな写像は存在しない。
つまり、ε→0 という極限を考えることそのものが意味不明。
「ε→0 という極限を取る設定なら、(φ→R) が出現して時枝戦術が使えない」
とでも言いたいのであれば、
「>7-16はそんな設定ではないので何の反論にもなってない」
としか言いようがない。
267:132人目の素数さん
22/11/12 16:02:24.05 UXzpThWg.net
簡単な例を挙げよう。
閉区間 [0,1) から一様分布に従ってランダムに実数 t を1つ取る。
t<1/3 ならスレ主の負け。t≧1/3 ならスレ主の勝ち。
この場合、スレ主の勝率は 2/3 であるが、スレ主の屁理屈によれば、次のようになる。
・ f:[0,1)→[b,b+ε) という変換によって、[0,1) は [b,b+ε) に移る。
・ この場合、上記のゲームは [b,b+ε) から一様分布に沿ってランダムに
実数 t を1つ取るというゲームに変換される。
・ このゲームにおいて ε→0 の極限を考えると、[b,b+ε) → φ である。
しかし、φから一様分布に従ってランダムに実数 t を選ぶことはできない。
これがスレ主の言っていること。
で?だから何?こんな意味不明な操作をして何がしたいの?
バカじゃないの。
268:132人目の素数さん
22/11/12 16:07:04.67 UXzpThWg.net
そしてスレ主、>>227-229 は完全スルー。
頭の悪いスレ主には、>227-229のようなシンプルな事実でないと
理解が追いつかないのかもしれない。
そして、理解が追い付いた範囲(>227-229)では
スレ主にとって都合の悪いことしか起きてないので完全スルーし、
理解が追い付かない範囲(>>7-16)では、
何も理解してないので意味不明なレスを寄越す。
結局、トンデモの知性ではこのあたりが限界なんだろうな。
269:132人目の素数さん
22/11/12 16:30:20.50 suRZFylo.net
この一連のやり取りを上手くまとめてドキュメンタリーに仕立てたら面白いだろうな。5ch数学板で有名なトンデモ男と、トンデモ理論を丁寧に善意解釈しながら徹底的に論破する数学屋の戦い
270:132人目の素数さん
22/11/12 17:46:49.46 r4QYDURa.net
>>239 さすが論理が全く分からん、モンゴルのトンチンカーンw
>>240 ブルシットせたぼんは直感だけで生きてきた🐒だからしゃあない(嘲)
1は既に>>216でコッパミジンに論破されてるw
[0,1)→Rを任意の半開区間[a,b)→Rに置き換えられるし
ε=b-aは、0より大きいならいくらでも小さくできるが
0にすることは絶対にできないし、それゆえ箱入り無数目は成立する
逆に[0,1]とか[a,b]とかいう閉区間にしてしまうと
1とかbとかいう最終地点が存在してしまうのでアウト
ブルシットせたぼんがわめいてた「決定番号∞となる確率1」も
{1,2,3,・・・}ではなく、{1,2,3,・・・∞}に勝手にすり替えたための初歩的誤り
論理に基づいて考えたなら決してなしえないが
直感だけで思いつくから平気で∞とか混ぜる
>>247
ブルシットせたぼんは
ES細胞混ぜたオボカタハルコとかいう巨●だけが売りの♀や
エッシャ―の階段とかいう詭弁を弄してABC予想証明したとほざく
半分ユダヤ人のペテン師と同類の
271:サイコパスだよ
272:132人目の素数さん
22/11/12 17:55:19.80 r4QYDURa.net
>>247
>5ch数学板で有名なトンデモ男
10年間、ガロア理論と名のつくスレッドを立てつづけたが
ガロア理論の教科書の文章を論理的に読解する能力が完全に欠如しているため
ガロア理論の基本定理すら正しく理解できず
「全ての部分群は正規部分群」
「全ての有限群は有理数体のガロア拡大のガロア群」
などの迷言を残した男
それが「現代数学の系譜 雑談 ◆yH25M02vWFhP」
まあ、そもそも
「任意の正方行列は逆行列を持つ」
「無限乗積Π anは
anが全て1より大きければ、∞に発散
anが全て1より小さければ、0に発散」
とかいう初歩的誤りのホラを平気でホザク🐎🦌だからな
大学1年の線型代数も微積分も正しく理解できないヤツに
ガロア理論なんか到底無理よw
273:132人目の素数さん
22/11/12 17:55:42.68 r4QYDURa.net
ということで、このスレ完全終了wwwwwww
274:132人目の素数さん
22/11/12 17:55:42.70 r4QYDURa.net
ということで、このスレ完全終了wwwwwww
275:現代数学の系譜 雑談
22/11/12 18:11:12.70 nRKohC+j.net
>>247
>この一連のやり取りを上手くまとめてドキュメンタリーに仕立てたら面白いだろうな。5ch数学板で有名なトンデモ男と、トンデモ理論を丁寧に善意解釈しながら徹底的に論破する数学屋の戦い
ありがと
”5ch数学板で有名なトンデモ数学科落ちこぼれ男と、
トンデモな勘違いを丁寧に反論しながら
徹底的に論破するスレ主の戦い”
だな
276:132人目の素数さん
22/11/12 18:21:32.03 r4QYDURa.net
>>252
正しくは
”5ch数学板で有名なトンデモ大学数学落ちこぼれ男と、
トンデモな勘違いを丁寧に反論しながら徹底的に論破する数学屋の戦い”
数学者になれなかった、という意味でのオチコボレと
大学数学が理解できなかった、という意味のオチコボレは
レベルが全然違うwww
277:現代数学の系譜 雑談
22/11/12 18:26:19.98 nRKohC+j.net
>>241
>時枝記事では、決定番号の写像 d:R^N → N は非有界。
>スレ主はこのことを以って「 d には非正則分布の構造が入る」という
>屁理屈を展開していた。
>しかし、>>7-16では、対応する決定番号の写像 d:([0,1)→R) → [0,1)は
>有界である。よって、スレ主はこちらの d に対しては「非正則分布」が使えない。
1)「N は非有界」は、小学生でも知っていることで
Nについての記述は、時枝記事>>1の通りだよ(下記)
2)で、お主は話をすり替えようと、連続版の
決定番号の写像 d:([0,1)→R) → [0,1)
を考えたんだね
3)だけど、まず、「N は非有界」の話のすり替えは無理
だって、時枝記事の記述そのものだから
4)そして、「N は非有界」は相対的なもので
N → [0,1)の埋め込みを考えれば、話は簡単
例えば、f:n→1-1/n を考えれば良い
0,1/2,2/3,・・,(n-1)/n,・・→1
となるよ
5)よって、「N は非有界」と
”N → [0,1)の埋め込み”の存在は両立する
この両立を使った話が>>155-157だよ
(参考)
純粋・応用数学(含むガロア理論)8
スレリンク(math板:402番)
時枝問題(数学セミナー201511月号の記事)
2.続けて時枝はいう
私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s ~ s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
~は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/~の切断を選んだことになる.
278:132人目の素数さん
22/11/12 18:30:16.46 UXzpThWg.net
まず数学以前に国語の問題だからな。
スレ主は国語ができないバカなので、時枝記事で設定されているゲームが
"(T,s)-時枝ゲーム"
であるとは読み取れなかった。スレ主は時枝記事とは関係のないゲームを
勝手に読み取り、的外れな批判をずっと繰り広げていた。
つまり、存在しない敵と勝手に戦っていたのがスレ主ということ。
・ (T,s)-時枝ゲームでの回答者の勝率が 99/100 以上であるという事実は覆らない。
・ それはちょうど、6-ゲームでの回答者の勝率が 1-1/6 であるという事実が覆らないのと同じ。
え?なに?非正則分布を使えば回答者の実際の勝率はゼロだって?
だったら、>>147でも、n_0 に対して非正則分布を使えば回答者の勝率はゼロだよな(>>227)。
特に、6-ゲーム(=サイコロゲーム)での回答者の勝率は 1-1/6 じゃなくて勝率ゼロだよな。
バカじゃないの。
279:132人目の素数さん
22/11/12 18:31:39.14 UXzpThWg.net
>>254
>4)そして、「N は非有界」は相対的なもので
> N → [0,1)の埋め込みを考えれば、話は簡単
おやおや?非有界な写像だからこその「非正則分布」だったはずが、
> N → [0,1)の埋め込みを考えれば、話は簡単
このような対応関係を用いれば、有界な写像であっても
「非正則分布が使われている」と主張できてしまうのか。
だったら、全ての写像に非正則分布が使われていることになるねw
280:132人目の素数さん
22/11/12 18:33:04.11 UXzpThWg.net
一例として、([0,1),F_1,μ_1)を通常のルベーグ測度空間とする。
これは確率空間であることに注意せよ。
写像 X:[0,1) → R を X(t):=t で定義すると、これは可測なので、
X は確率空間([0,1),F_1,μ_1)の中では「確率変数」ということになり、
特に期待値 E(X) が定義できて、E(X)=∫[0,1] X(t) dμ_1 = 1/2 となる。
ところで、X(t)=t なのだから、X:[0,1) → [0,1) であり、
つまり X は有界な写像である。よって、
> N → [0,1)の埋め込みを考えれば、話は簡単
という対応関係により、X には非正則分布が使われていることになる。
よって、この X を用いた確率計算は全てデタラメである。
もちろん、E(X)=1/2 という計算もデタラメである。
これがスレ主の言っていること。バカじゃないの。
281:現代数学の系譜 雑談
22/11/12 18:37:19.71 nRKohC+j.net
>>254 補足
整理しておこう
1)時枝記事オリジナル>>1 と、決定番号すり替え版>>8
とも、
そもそも、全事象Ωにルベーグ測度が入らない
2)決定番号すり替え版>>8は、>>239の通り
時枝記事オリジナル>>1は、>>38-39の通り
(無限次元空間にはルベーグ測度のような一様測度は存在しない (会田茂樹、藤田博司>>38-39 ))
3)そこから、
ずっこけの話ですぞww
282:132人目の素数さん
22/11/12 18:39:39.38 UXzpThWg.net
>4)そして、「N は非有界」は相対的なもので
ここまで断定してくれると清々しいね。
・「 N は非有界」は相対的なものなので、
例え有界な写像であっても、Nからの埋め込みを考えることで、
そこに非正則分布たる N の構造を自然に導入できてしまう。
・ つまり、有界な写像でも非正則分布が使われている!!!
そして、「時枝記事では非正則分布が使われているから間違い」というのが
スレ主の主張なのだったから、全く同様にして、
「有界な写像には非正則分布が使われているので、有界な写像を使った時点で間違い」
ということになる。つまり、スレ主は数学そのものが矛盾していると主張していることになるw
バカじゃないの。
283:132人目の素数さん
22/11/12 18:40:52.11 UXzpThWg.net
>>258
盛大にずっこけてるのはスレ主だよ。バカじゃないの。
284:132人目の素数さん
22/11/12 18:59:31.07 Wt6BYOwg.net
>>258
>整理しておこう
>1)時枝記事オリジナル>>1 と、決定番号すり替え版>>8
> とも、
> そもそも、全事象Ωにルベーグ測度が入らない
何の整理だよバカw
285:132人目の素数さん
22/11/12 19:17:41.24 Wt6BYOwg.net
100列の決定番号が固定されているとか、完全代表系が固定されているとか、非正則分布を使っていないとかは時枝戦略の仕様だからそこは何人たりとも拒否できない。
不成立派はそれらを受け入れたうえで不成立であることを示さなければならない。
そうでなければいくらでもデタラメ時枝戦略をでっち上げて「ほら不成立だろ?」と言えることになる。
まあサルに言っても無駄かw
286:132人目の素数さん
22/11/12 20:02:38.05 Wt6BYOwg.net
箱入り無数目の仕様
出題列を固定する
時枝戦略の仕様
出題列を100列に並べ替える方法を固定する
時枝同値関係を使う
完全代表系を固定する→どの列の決定番号も自然数の定数
100列のどれを選択するかが確率変数でその確率分布は離散一様分布
非正則分布を使わない
仕様を無視したデタラメ時枝戦略でっち上げは即反則負けとなりますのでご注意ください
287:132人目の素数さん
22/11/12 20:54:04.62 UXzpThWg.net
>>258
>1)時枝記事オリジナル>1 と、決定番号すり替え版>8
> とも、
> そもそも、全事象Ωにルベーグ測度が入らない
>2)決定番号すり替え版>8は、>239の通り
この発言、スレ主がいかに国語ができない人間であるかを如実に表している。
スレ主は ([0,1) → R) を全事象
288:とする確率空間を設定しようとして失敗しているようだが、 そもそも ([0,1) → R) を確率空間として設定しようとする行為自体が既にナンセンス。 なぜなら、>>7-16の設定では、出題者は f_1,f_2,…,f_100∈([0,1) → R) を 確率的操作によって選ぶのではなく、「∀f_1,f_2,…,f_100∈([0,1) → R) s.t. ・・・」 の意味において任意に f_1,f_2,…,f_100 を選んだあと、 その後は毎回その f_1,…,f_100 を使い続けるからである。 つまり、この部分は確率空間で記述する設定ではないのである。
289:132人目の素数さん
22/11/12 20:55:47.71 UXzpThWg.net
実際、>>7-16の設定では、
(>>11)
>出題者は、出題する100個の f_1,f_2,…,f_100∈([0,1) → R) を
>任意に選ぶ権利が与えられている。ただし、ひとたび f_1,f_2,…,f_100 を選んだら、
>その後は毎回これらの f_1,f_2,…,f_100 を出題しなければならないとする。
(>>12)
>さて、上記のとおり、出題者は f_1,f_2,…,f_100∈([0,1) → R) を任意に選ぶ。
>今後は、出題者は毎回この f_1,…,f_100 を出題することになる。
と明記してある。つまり、この部分は確率空間で記述する設定ではない。
「∀f_1,f_2,…,f_100∈([0,1) → R) s.t. ・・・」の意味において
任意に f_1,f_2,…,f_100 を選んだあと、
その後は毎回その f_1,…,f_100 を使い続けるだけである。
290:132人目の素数さん
22/11/12 21:00:20.85 UXzpThWg.net
では、この部分を確率空間で記述するのでは無いのなら、一体どこが確率空間で記述されるのか?
そもそも、>>7-16では一体どのようなゲームが開催されるのか?
これは時枝記事と本質的に同じである。
まず、>7-16では無数にある完全代表系の中から1つの T を選び、
その後はずっとこの T を使い続ける。そして、f_1,f_2,…,f_100∈([0,1) → R) もまた、
ひとたび f_1,f_2,…,f_100∈([0,1) → R) を選んだあとは、毎回この100個が使い回される。
よって、>7-16の設定で開催されるゲームは
"(T,f_1,…,f_100)-連続版時枝ゲーム"
である(Tとf_1~f_100が固定された状態のゲーム)。
291:132人目の素数さん
22/11/12 21:02:10.22 UXzpThWg.net
そして、このゲームでは、回答者は 1,2,…,100 から毎回ランダムに番号 i を選ぶ。
従って、このゲームを記述する確率空間は
({1,2,…,100}, pow({1,2,…,100}), η) (ただしη({i})=1/100 (1≦i≦100))
である。スレ主は([0,1) → R) を確率空間として設定しようとしていたが、
>7-16を実際に記述する確率空間は上記の({1,2,…,100}, pow({1,2,…,100}), η)なのである。
スレ主のような国語のできないバカは、こういう基本的な部分で大きく躓く。
292:132人目の素数さん
22/11/12 21:05:20.61 UXzpThWg.net
では、こうして確率空間 ({1,2,…,100}, pow({1,2,…,100}), η) が
設定された上で、回答者の勝率はどうなっているのか?
今回の "(T,f_1,f_2,…,f_100)-連続版時枝ゲーム" では
Tとf_1~f_100が固定されているので、100個の決定番号は毎回同じであり、
その中でハズレは高々1つで、どれがハズレなのかも毎回同じである。
回答者は 1,2,…,100 の中からランダムに番号 i を選んで時枝戦術を実行するのだから、
ハズレとなる i を引かなければ回答者は勝利する。そして、ハズレは高々1つ。
よって、このゲームでの回答者の勝率は 99/100 以上である。
すなわち、(T,f_1,…,f_100)-連続版時枝ゲームでの回答者の勝率は 99/100 以上である。
>>7-16で記述している「回答者の勝率」とは、この意味での勝率のことを指している。
293:132人目の素数さん
22/11/12 21:12:33.21 UXzpThWg.net
このような議論のトイモデルとなっているのが>>147である。
・ >147では、無数にある n≧6 の中から任意に n=n_0≧6 を選んで固定する。
・ そこで固定された n_0 に対して、"n_0-ゲーム" が開催される。
・ この "n_0-ゲーム" での回答者の勝率は 1-1/n_0 である。
・ たとえば、n_0=6 のときは "6-ゲーム" が開催されるが、
その 6-ゲーム での回答者の勝率は 1-1/6 である。
時枝記事や>>7-16では、この>147と同じ構造によって "(T,s)-時枝ゲーム" や
"(T,f_1,…,f_100)-連続版時枝ゲーム" を開催しているのであり、
そのゲームでの回答者の勝率は 99/100 以上である。
この事実は覆せない。6-ゲームでの回答者の勝率が 1-1/6 であるという事実が
覆せないように、(T,s)-時枝ゲームや(T,f_1,…,f_100)-連続版時枝ゲームでの
回答者の勝率が99/100 以上であるという事実は覆せない。
すなわち、時枝記事は正しい。
国語ができないバカ(=スレ主)が存在しない敵といつまでも戦ってるだけ。
294:132人目の素数さん
22/11/13 07:33:55.24 xABuqW8L.net
>>254
>N は非有界
ℵ1の中で考えたら、N=ℵ0は有界だがw
しかし、そこが重要なのではなぁい!w
最大元が存在するか否かが問題
最大元が存在しないNでは必ず尻尾がとれるが
最大元が存在するN∪{∞}では、決定番号∞の場合尻尾がとれないからアウト
ただ、それだけのことが正しく言葉で言い表せない文盲に数学は無理w
295:132人目の素数さん
22/11/13 07:35:55.36 xABuqW8L.net
>>257
>そもそも、全事象Ωにルベーグ測度が入らない
ヴィタリ集合がなんで非可測なのかも理解できない
馬鹿の君がルベーグ積分がぁとかほざいても説得力ゼロよ
296: ゼ・ロ ギャハハハハハハ!!!
297:132人目の素数さん
22/11/13 07:37:15.22 xABuqW8L.net
アンカーつけ間違えたので、ご丁寧に再書込w
>>258
>そもそも、全事象Ωにルベーグ測度が入らない
ヴィタリ集合がなんで非可測なのかも理解できない
馬鹿の君がルベーグ積分がぁとかほざいても説得力ゼロよ ゼ・ロ
ギャハハハハハハ!!!
298:132人目の素数さん
22/11/13 07:41:38.98 xABuqW8L.net
>>262
>100列の決定番号が固定されているとか、
>完全代表系が固定されているとか・・・は
>時枝戦略の仕様だから
>何人たりとも拒否できない。
然り
>非正則分布を使っていない
正確にいえば
「箱の中身は確率変数でない」
箱の中身を確率変数とした拡張問題では
決定番号の分布は非可測(非正則ではない!)となるが
そんなことは元の記事の確率計算では一切出てこない
しかし雑談とかいう馬鹿はそのことが理解できない
完全な白痴だな
299:132人目の素数さん
22/11/13 07:48:35.29 xABuqW8L.net
>>263
>仕様を無視したデタラメ時枝戦略でっち上げは即反則負け
すでに雑談は二回負けてる
1.NをN∪{∞}にすり替える
2.代表選出はあらかじめ決める、と認めておきながら
実際には箱の中身を見た後に代表選出するズルをする
もうこんなサイコパス馬鹿野郎ほっときなよ ひろゆき並みに悪質
300:現代数学の系譜 雑談
22/11/13 12:14:51.65 h83IOXQT.net
>>259
>> 4)そして、「N は非有界」は相対的なもので
>ここまで断定してくれると清々しいね。
意味分からん
1)時枝>>1では、単に
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.」>>1
「実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s ~ s'と定義しよう(いわばコーシーのべったり版).」>>254
とあって
可算無限数列を考えるだけ
添え字は、標準的に自然数Nを使っている
それだけのことでしょ
2)数列は、可算無限で
添字集合は、下記のように自然数Nに限られない
が、可算の場合、自然数Nがよく使われる
区間[0.1]中の添字集合を取ることは、各人の勝手だろ
3)私個人が「断定してくれる」?
アホじゃね?
数学を、ディベートと勘違いする
数学科落ちこぼれがいるw
(参考)
URLリンク(ja.wikipedia.org)
添字集合(そえじしゅうごう、index set)は、別の集合の元に対して「ラベル」付けを行うときの、「ラベル」の集合を言う[1]。
各「ラベル」は指数、添数、添字 (index) などと呼ばれる。添字となるものは、列の項の番号であったり、媒介変数であったりと様々である。添字付けられた族のラベル付けや次数付き代数系の次数付けの添字として使うものは、数学的には種類はなんでもよく、適当な集合 Λ を選んで、その元 λ ∈ Λ を添字にすることができる。添字付けの数学的な意味は、添字集合からの写像である。
301:132人目の素数さん
22/11/13 12:49:16.81 hc/QV2/w.net
>>275
どうした?何の反論にもなってないぞ?
「N は非有界」は相対的なものなんだろ?>>254でスレ主は
>4)そして、「N は非有界」は相対的なもので
>N → [0,1)の埋め込みを考えれば、話は簡単
と書いてたよな?
つまり、有界な写像であっても、Nからの埋め込みを考えることで、
そこに非正則分布たる N の構造を自然に導入できてしまうわけだ。
よって、有界な写像でも非正則分布が使われている!
そして、「時枝記事では非正則分布が使われているから間違い」というのが
スレ主の主張なのだったから、全く同様にして、
「有界な写像には非正則分布が使われているので、有界な写像を使った時点で間違い」
ということになる。つまり、スレ主は数学そのものが矛盾していると主張していることになるw
バカじゃないの。
302:132人目の素数さん
22/11/13 12:55:37.85 hc/QV2/w.net
そしてスレ主、依然として "6-ゲーム" 関連の話題は完全スルー。
>>147のトイモデルで言えば、
6-ゲームでの回答者の勝率が 1-1/6 であることを
延々と否定し続けているのがスレ主である。国語のできないバカの末路がこれよw
6-ゲームでの回答者の勝率が 1-1/6 であるという事実が覆せないように、
(T,s)-時枝ゲームや(T,f_1,…,f_100)-連続版時枝ゲームでの
回答者の勝率が99/100 以上であるという事実は覆せない。
すなわち、時枝記事は正しい。
303:132人目の素数さん
22/11/13 15:24:24.64 xABuqW8L.net
>>275
>意味分からん
意味分からんのは貴様の主張
アホは黙ってどっかへ失せろ
304:132人目の素数さん
22/11/13 17:43:26.92 xABuqW8L.net
雑談 ◆yH25M02vWFhP が時枝正に嫉妬して難癖つけてんの 意味わからんw
305:132人目の素数さん
22/11/13 17:50:49.88 xABuqW8L.net
結局 雑談 ◆yH25M02vWFhP は
「箱の中身は互いに独立なんだから、
他の箱を見たって中身が分かるわけない
論理なんか必要ない 直感こそ絶対の真理!」
と発狂してるだけの中卒🐎🦌w
306:現代数学の系譜 雑談
22/11/13 20:01:52.60 h83IOXQT.net
>>276-280
>何の反論にもなってないぞ?
307: 反論? 不要だな 数学では、正しい主張が一つあれば良い 逐一反論する必要ない ディベートとは違う 適当に流すところは流し 反論は適当にやれば足りる こっちは、 完全勝利>>6 だからww
308:132人目の素数さん
22/11/13 20:24:04.57 NET8T5dz.net
>>281
>数学では、正しい主張が一つあれば良い
その通り
おまえのは一つも無い
309:132人目の素数さん
22/11/13 20:35:27.38 NET8T5dz.net
一方、箱入り無数目記事は正しい主張である
誰かさんがイカサマ時枝戦略をでっち上げてるだけ
310:132人目の素数さん
22/11/13 20:40:08.19 hc/QV2/w.net
>>281
具体的に反論できなくなった人間は、このような水掛け論に走る。
そして、そのような手口には簡単に対処できる。水を掛け返せばいいだけ。
>数学では、正しい主張が一つあれば良い
>逐一反論する必要ない
正しい主張が1つあればそれで良いのであれば、
時枝記事は正しいのだから、それで終わり。スレ主の屁理屈は全て間違い。
スレ主はこのことに反発するだろうが、こちらから逐一反論する必要ない。
ディベートとは違うからな。
これにて、時枝記事の完全勝利である。
311:132人目の素数さん
22/11/13 20:41:37.95 hc/QV2/w.net
はい、水を掛け返しました。これで茶番は終了。
そして、水掛け論を差し引いたときに最後に残ったのは、
「スレ主は>>276-277に反論できなかった」という明確な事実だけ。
スレ主はここで詰み。スレ主は数学から引退すべきだな。
312:132人目の素数さん
22/11/13 20:48:15.04 hc/QV2/w.net
スレ主は>>254で
>4)そして、「N は非有界」は相対的なもので
>N → [0,1)の埋め込みを考えれば、話は簡単
と書いてしまった。すると、同じ屁理屈により、
たとえ有界な写像であっても、非正則分布の構造を導入できてしまう。
なんたって、「Nは非有界」は相対的なんだから、有界な写像であっても、
Nからの埋め込みを考えればいいわけで、非正則分布の構造をそこに導入できるw
よって、スレ主の屁理屈により、有界な写像でも非正則分布が使われていることになる。
そして、「時枝記事では非正則分布が使われているから間違い」というのが
スレ主の主張なのだったから、「有界な写像には非正則分布が使われているので、
有界な写像を使った時点で間違い」ということになる。
つまり、スレ主は数学そのものが矛盾していると主張していることになるw
バカじゃないの。
313:132人目の素数さん
22/11/13 21:01:09.77 hc/QV2/w.net
スレ主にとっては>>6が完全勝利の証であるらしいが、
>6は時枝記事とは全く関係のない設定について語っており、
その内容も支離滅裂である。
実際、時枝記事では T と s を固定するごとに
"(T,s)-時枝ゲーム" (Tとsを固定した状態での時枝ゲーム)
が開催されているのに、>6ではこの設定を踏襲していない。
この時点で既に、>6は時枝記事に何の影響も与えない。
つまり、>6では時枝記事への反論にならない。
国語ができないバカ(=スレ主)がこういう話題に安易に手を出しても、
的外れな議論しか出来ないのであるw
314:132人目の素数さん
22/11/13 21:03:15.74 hc/QV2/w.net
>>147のトイモデルで言えば、6-ゲームでの回答者の勝率が 1-1/6 であることを
延々と否定し続けているのがスレ主である。国語のできないバカの末路がこれよw
6-ゲームでの回答者の勝率が 1-1/6 であるという事実が覆せないように、
(T,s)-時枝ゲームや(T,f_1,…,f_100)-連続版時枝ゲームでの
回答者の勝率が99/100 以上であるという事実は覆せない。
すなわち、時枝記事は正しい。
315:132人目の素数さん
22/11/13 21:12:06.20 NET8T5dz.net
>スレ主は数学から引退すべきだな
引退も何も奴は入門すらしていない
316:132人目の素数さん
22/11/14 05:53:28.33 rN0xlW0K.net
>>281
現代数学の系譜 雑談 ◆yH25M02vWFhP 死す!
317:132人目の素数さん
22/11/14 10:18:26.26 6LEruYJB.net
非正則分布である2つの自然数を用意してそれぞれ箱に隠す
どちらの箱を先に開けるかコイントスで選ぶ
箱を一つ開ける
さて残りの箱に入っている自然数は最初の箱の自然数より大きい確率は?
この問題が箱入り無数目を単純化した問題だと思う
318:現代数学の系譜 雑談
22/11/14 11:02:53.03 dTQYGy3N.net
>>291
(引用開始)
非正則分布である2つの自然数を用意してそれぞれ箱に隠す
どちらの箱を先に開けるかコイントスで選ぶ
箱を一つ開ける
さて残りの箱に入っている自然数は最初の箱の自然数より大きい確率は?
この問題が箱入り無数目を単純化した問題だと思う
(引用終り)
どうもありがとうございます。
スレ主です
似たことは考えたことがある
それ(上記は)、良いと思う
補足すれば
1)開けた箱は既知で確率ではなくなり
開けていない箱は未知で(直感的には)確率だってことです
2)非正則分布の典型例として、
自然数全体N(つまり{0,1,2,・・m}なる一様分布でm→∞ としたもの)
を考えると、自然数全体Nの平均値(期待値)は、
m/2→∞ に発散している
だから、開けた箱の数が常に小さい(確率的推論としてはね)
3)では、二つの箱を同時に開けたら?
4)非正則分布を前提にすると
大数の法則が成り立たないから(下記)
そこは、確率ト�
319:潟bクのタネでしょう 5)非正則分布の二つの箱を同時に開ける場合は、 測度論による公理的確率論では扱えない そういう結論になるのでは? (cf:下記ベルトランの逆説) (参考) https://ja.wikipedia.org/wiki/%E5%A4%A7%E6%95%B0%E3%81%AE%E6%B3%95%E5%89%87 大数の法則 大数の法則とは、確率論・統計学における基本定理の一つ。公理的確率により構成される確率空間の体系は、統計学的確率と矛盾しないことを保証する定理である。 一般に、大数の法則は「独立同分布に従う可積分な確率変数列の標本平均は平均に収束する」と述べられる https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%88%E3%83%A9%E3%83%B3%E3%81%AE%E9%80%86%E8%AA%AC ベルトランの逆説 確率論の古典的解釈において発生する問題である
320:132人目の素数さん
22/11/14 11:19:43.85 WaGhWUGG.net
>>291-292
このように、国語のできないバカは時枝記事と無関係の設定を語り、
存在しない敵と戦いだす。無論、それでは時枝記事への反論にならない。
今回は>>291に合わせて2列の場合を考える。
時枝記事で開催されるゲームは "(T,s)-時枝ゲーム" である。
(T,s)-時枝ゲームでは T と s が固定なので、出力される「 2個 」の決定番号は
毎回同じである。その2つを d_1, d_2 とすれば、毎回 d_1,d_2 が出力される。
321:132人目の素数さん
22/11/14 11:22:23.35 WaGhWUGG.net
d_1=d_2 の場合:回答者は 1,2 の中からランダムに番号 i を選んで
時枝戦術を実行するが、どちらの i でも回答者は勝利する。
毎回d_1,d_2が出力されるのだから、結局、回答者は毎回勝利する。
よって、回答者の勝率は1である。
d_1<d_2 の場合:回答者は 1,2 の中からランダムに番号 i を選んで
時枝戦術を実行するが、i=2 なら回答者は勝利する。
毎回d_1,d_2が出力されるのだから、結局、i=2を引いた回は必ず勝利する。
よって、回答者の勝率は 1/2 以上である。
d_1>d_2 の場合:回答者は 1,2 の中からランダムに番号 i を選んで
時枝戦術を実行するが、i=1 なら回答者は勝利する。
毎回d_1,d_2が出力されるのだから、結局、i=1を引いた回は必ず勝利する。
よって、回答者の勝率は 1/2 以上である。
以上により、(T,s)-時枝ゲームでの回答者の勝率は 1/2 以上である。
322:132人目の素数さん
22/11/14 11:27:20.04 WaGhWUGG.net
このように、(T,s)-時枝ゲームでは出力される2個の決定番号 d_1,d_2 が
毎回同じなので、非正則分布とやらが出現しない。
一方で、>>291が主張しているのは
「 d_1,d_2 を非正則分布に従って毎回ランダムに選び、
回答者は 1,2 からランダムに番号 i を選ぶとき、
d_i がもう片方の d_j よりも大きい確率はいくつか?」
という問題設定である。この設定では、d_1,d_2が毎回ランダムに
変動しているので、(T,s)-時枝ゲームの設定を全く踏襲していない。
つまり、>>291の問題設定は時枝記事とは無関係である。
このように、国語のできないバカは時枝記事と無関係の設定を語り、
存在しない敵と戦いだす。無論、それでは時枝記事への反論にならない。
323:132人目の素数さん
22/11/14 11:33:24.34 WaGhWUGG.net
>>147のトイモデルで言えば、"6-ゲーム" での回答者の勝率は 1-1/6 なのに、
そこに非正則分布を持ち出して
「6-ゲームでの回答者の勝率はゼロである」
あるいは
「非正則分布を前提にすると、6-ゲームでの回答者の勝率は公理的確率論では扱えない」
などと主張しているのと同じ。
バカじゃないの。
324:132人目の素数さん
22/11/14 11:54:07.57 6ZDYhC/l.net
>>292
>>291で問われている確率は
P(箱1の中身>箱2の中身)
ではなく
P(開けてない箱の中身>開けた箱の中身)
よって確率変数は箱の中身の選択ではなく開ける箱の選択。箱の中身は定数。
よって確率計算に非正則分布は使われない。
白痴中卒に言っても無駄かw
325:132人目の素数さん
22/11/14 12:03:42.77 6ZDYhC/l.net
>>292
>5)非正則分布の二つの箱を同時に開ける場合は、
> 測度論による公理的確率論では扱えない
> そういう結論になるのでは? (cf:下記ベルトランの逆説)
はい、大間違い
正解は1/2
箱をコイントス(一様分布の仮定)で選択しているから
>>291が分からない白痴に箱入り無数目は無理
326:132人目の素数さん
22/11/14 12:42:16.31 6LEruYJB.net
>>297
だよね
時枝戦略が正しいというロジックがそのまま使える
>>292
こちらは非正則分布だから確率0という時枝戦略はトリックというロジックがそのまま使える
つまり
>>291
は時枝戦略を単純化した問題と言える
327:132人目の素数さん
22/11/14 12:46:52.28 6LEruYJB.net
>>299
時枝戦略をじゃなくて箱入り無数目を
328:132人目の素数さん
22/11/14 12:48:16.99 locJSrPb.net
>>140
>まずは、読んでみるべしだよ ヘルマンダー本とか下記とかネット検索も使って
> そして、普通人は、しょせん1回目で完璧に理解できる場合は少ない
この Linear partial differential operators っていう本、読める保証がなくなって来たし、
もっと基本的で面白くて便利そうな本が見つかったから、今回は取り敢えず他の本を購入した
もしかしたら、手元にある抽象的な非線形双曲型方程式の本の解読や研究には使えるかも知れない
329:132人目の素数さん
22/11/14 12:50:50.58 6ZDYhC/l.net
簡単のため2つの箱の中身は異なるとする
2つの箱のうち他より大きい中身の箱は1つである Y/N
その箱をランダムに選択している Y/N
他より大きい中身の箱を選ぶ確率は1/2である Y/N
330:現代数学の系譜 雑談
22/11/14 12:53:28.16 dTQYGy3N.net
>>292 補足の補足
(引用開始)
1)開けた箱は既知で確率ではなくなり
開けていない箱は未知で(直感的には)確率だってことです
2)非正則分布の典型例として、
自然数全体N(つまり{0,1,2,・・m}なる一様分布でm→∞ としたもの)
を考えると、自然数全体Nの平均値(期待値)は、
m/2→∞ に発散している
だから、開けた箱の数が常に小さい(確率的推論としてはね)
3)では、二つの箱を同時に開けたら?
4)非正則分布を前提にすると
大数の法則が成り立たないから(下記)
そこは、確率トリックのタネでしょう
5)非正則分布の二つの箱を同時に開ける場合は、
測度論による公理的確率論では扱えない
そういう結論になるのでは? (cf:下記ベルトランの逆説)
(引用終り)
<補足の補足>
時枝>>1に即して言えば
1)100列で、開けた99列は既知で確率ではなくなり
開けていない一つの列は、未知で
”開けた箱の数が常に小さい(確率的推論としては)”(上記)
となる
2)非正則分布の100列の箱を同時に開ける場合は、
測度論による公理的確率論では扱えないかな?
(時枝(下記)のような100列で
「s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.」
が言えない)
つづく
331:現代数学の系譜 雑談
22/11/14 12:54:18.43 dTQYGy3N.net
>>303
つづき
(参考)
時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋
純粋・応用数学(含むガロア理論)8
スレリンク(math板:403番)
問題に戻り,閉じた箱を100列に並べる.
箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列s^1,s^2,・・・,s^100を成す(肩に乗せたのは指数ではなく添字).
これらの列はおのおの決定番号をもつ.
さて, 1~100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
開けた箱に入った実数を見て,代表の袋をさぐり, s^1~s^(k-l),s^(k+l)~s^100の決定番号のうちの最大値Dを書き下す.
いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:s^k(D+l), s^k(D+2),s^k(D+3),・・・.いま
D >= d(s^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってs^k(d)が決められるのであった.
(引用終り)
以上
332:132人目の素数さん
22/11/14 12:56:16.43 locJSrPb.net
>>140
>>301の本の題名訂正:Linear partial differential operators
→ Lectures on Nonlinear Hyperbolic Differential Equations
333:現代数学の系譜 雑談
22/11/14 12:57:13.70 dTQYGy3N.net
>>301
どうもありがとう
スレ主です
>もっと基本的で面白くて便利そうな本が見つかったから、今回は取り敢えず他の本を購入した
>もしかしたら、手元にある抽象的な非線形双曲型方程式の本の解読や研究には使えるかも知れない
なるほど
読んで面白かったら
また書いてね
334:現代数学の系譜 雑談
22/11/14 13:06:44.69 dTQYGy3N.net
>>297
(引用開始)
>>291で問われている確率は
P(箱1の中身>箱2の中身)
ではなく
P(開けてない箱の中身>開けた箱の中身)
よって確率変数は箱の中身の選択ではなく開ける箱の選択。箱の中身は定数。
よって確率計算に非正則分布は使われない。
(引用終り)
1)それまさに、”ハマリ”でしょw >>292
2)ベルトランの逆説 >>292 類似かもねw(下記)
(参考)>>292 再録
URLリンク(ja.wikipedia.org)
ベルトランの逆説
確率論の古典的解釈において発生する問題である
335:132人目の素数さん
22/11/14 13:47:03.38 WaGhWUGG.net
>>299
>つまり
>>>291
>は時枝戦略を単純化した問題と言える
言えない。その方向性で単純化するなら、以下の設定が正しい。
・「∀d_1,d_2∈N s.t. …」の意味において d_1,d_2∈N を任意に選ぶ。
・ 選んだ d_1,d_2 に対して、以下のような "(d_1,d_2)-ゲーム" を考える。
・ 出題者は毎回、この d_1,d_2 を出題する。
・ 回答者は 1,2 からランダムに番号 i を選ぶ。選んだ i に対する d_i が
もう片方の d_j 以下ならば回答者の勝ち。そうでないなら回答者の負け。
この設定こそが、>291の方向性での時枝記事の単純化。
もちろん回答者の勝率は 1/2 以上。
336:132人目の素数さん
22/11/14 13:52:22.51 6ZDYhC/l.net
>>303
>1)100列で、開けた99列は既知で確率ではなくなり
> 開けていない一つの列は、未知で
箱の中身を確率変数としていない どの列を選ぶかが確率変数
これは時枝戦略の仕様なので拒否できない
拒否=イカサマ時枝戦略のでっちあげ
337:132人目の素数さん
22/11/14 13:54:02.16 6ZDYhC/l.net
>>303
>2)非正則分布の100列の箱を同時に開ける場合は、
> 測度論による公理的確率論では扱えないかな?
どの列を選ぶかが確率変数なので非正則分布を使っていない
これは時枝戦略の仕様なので拒否できない
拒否=イカサマ時枝戦略のでっちあげ
338:132人目の素数さん
22/11/14 13:54:55.93 WaGhWUGG.net
そして、上記の設定を「∀d_1,d_2∈N s.t. …」とはせずに
「非正則分布に従って毎回ランダムに d_1,d_2 を選ぶ」
としたのが>291。これは時枝記事の設定(
339:出力される2個の決定番号が毎回固定) を踏襲していないのでダメ。 「回答者は結局 1,2 からランダムに番号 i を選ぶのだから、 どのみち回答者の勝率は 1/2 以上ではないのか?」 ・・・という問題ではない。結論が時枝記事と合致していれば良いのではない。 そもそもの設定が時枝記事を踏襲していなければダメなのだ。 たとえば、時枝記事とは明らかに無関係なゲームを提唱し、そのゲームでの 回答者の勝率が 1/2 以上になったとして、じゃあその設定は時枝記事と 何の関係があるのかと言われたら、「回答者の勝率が時枝記事と同じなだけであって、 設定そのものは時枝記事とは関係がない」としか言いようがない。 >>291はこのケースで、時枝記事の設定をちゃんと踏襲していないのでダメ。
340:132人目の素数さん
22/11/14 14:00:46.51 6ZDYhC/l.net
>>307
>1)それまさに、”ハマリ”でしょw >>292
箱の中身を確率変数とするイカサマ時枝戦略ならね
イカサマ時枝戦略をでっち上げたところで時枝戦略への何の反論にもなっていないことにそろそろ気付こうか
341:132人目の素数さん
22/11/14 14:04:36.78 6ZDYhC/l.net
>>307
>>302には答えないの?
また言葉が通じないサルのふり?
342:132人目の素数さん
22/11/14 14:20:32.25 dZB6IUJM.net
>>292
>開けた箱は既知で確率ではなくなり
>開けていない箱は未知で確率だってことです
ハイッ、雑談クン、💩壺にドボン!
>(直感的には)
中卒の直感、誤りばかり
343:132人目の素数さん
22/11/14 14:27:57.06 6LEruYJB.net
>>308
時枝戦略の場合残す1列は最後に開ける必要があるので開ける箱と開けない箱を選ぶでないと時枝戦略を含む箱入り無数目を単純化したことにならない
344:132人目の素数さん
22/11/14 14:37:50.43 dZB6IUJM.net
>>292
>自然数全体N(つまり{0,1,2,・・m}なる一様分布で
>m→∞ としたもの)を考えると、
>自然数全体Nの平均値(期待値)は、
>m/2→∞ に発散している
>だから、開けた箱の数が常に小さい
>(確率的推論としてはね)
それ矛盾ねw
Aが一方の箱を、Bがもう一方の箱を
お互い相手に見えないように開ける
互いに自分の開けた箱は確率でなくなり
相手の方が常に大きいと結論する
しかし、そんなことはありえない!
必ず一方が他方より大きいかどちらも同じかの
いずれかである!
雑談クンはいつでもconglomerabilityが成立すると
思い込んでるが、実はこの場合は成り立たない!
したがって漫然と条件つき確率の計算すると
間違って大恥かくwww
345:132人目の素数さん
22/11/14 14:44:06.53 6LEruYJB.net
>>316
それはいいところをついた
別の立場から計算したら違う確率が計算されるという状況はつまり確率が計算できないということ
346:132人目の素数さん
22/11/14 14:50:32.87 dZB6IUJM.net
>>317
そう、だから箱の中身が確率変数の場合は確率計算できない
箱入り無数目の確率計算はあくまで箱の中身が定数の場合に限る
これを一般化するのは雑談と同じ誤りを犯すことになる
347:132人目の素数さん
22/11/14 14:53:29.15 WaGhWUGG.net
>>315
2列だと対称性があって逆に分かりにくいので、100列でやるわ。
・「∀d_1,…,d_100∈N s.t. …」の意味において d_1,…,d_100∈N を任意に選ぶ。
・ 選んだ d_1,…,d_100 に対して、以下のような "(d_1,…,d_100)-ゲーム" を考える。
・ 出題者は毎回、この d_1,…,d_100 を出題し、
100個の箱の中に d_1,…,d_100 をこの順番に詰める。
・ 回答者は 1,2,…,100 からランダムに番号 i を選び、i 番目以外の箱を全て開ける。
その中身は d_j (1≦j≦100, j≠i) である。そこで、D=max{d_j|1≦j≦100, j≠i } と置く。
まだ開けてない i 番目の箱の中身が D 以下であれば、回答者の勝ち。
この設定が、>291の方向性での時枝記事の単純化。
もちろん回答者の勝率は 99/100 以上。
348:132人目の素数さん
22/11/14 14:55:09.32 dZB6IUJM.net
>>318
ただし箱の中身が確率変数の場合も
各列の失敗確率の総和はたかだか1である
なぜなら同時に2列以上が失敗することは
絶対にないから
349:132人目の素数さん
22/11/14 15:02:06.09 dZB6IUJM.net
>>320
どの列を選んでも負ける、と言うには
どの列を選んでも同じ代表が取れるとは言えない、とする必要がある
つまり代表選択関数という魔法を禁じるしかない
350:132人目の素数さん
22/11/14 16:05:45.05 00FhUROT.net
>>306
抽象的な非線形双曲型方程式の本って今では古典になった溝畑本ね
これには、ソボレフの不等式とか、一般的な設定の半線型双曲型方程式の結果が少しだけ書かれている
購入した本は超関数や関数解析を使わずに議論を進める本だけど、
物理に根差した方程式の有無については知らないが、
購入した本に従えば、一般的な設定の準線型双曲型方程式もある
351:132人目の素数さん
22/11/14 16:10:07.02 6ZDYhC/l.net
「○○仕様の戦略なら勝てる」
という主張に対して
「××仕様の戦略なら勝てない」
が反論になってると本気で思ってるなら白痴としか言い様が無い
もう一度言うよ
箱入り無数目や時枝戦略の仕様(>>263)を違えたらその時点で反則負けね 次やったら即反則負けなので注意して
352:132人目の素数さん
22/11/14 17:05:30.24 WBNGn+Mq.net
>>323
次とか言うな
負けイヌがいくら吠えても絶対相手するなって
あいつただのレス乞食なんだから
353:132人目の素数さん
22/11/14 17:07:16.21 WBNGn+Mq.net
>>322
別スレ立てろよ
気持ち悪い奴だな
354:132人目の素数さん
22/11/14 17:16:30.14 00FhUROT.net
>>325
別スレ立てる必要はない
溝畑本は線形 pde で有名な本だけど、半線型双曲型方程式の
特殊な場合の半線型波動型方程式についてもほんの僅かに扱っている
355:132人目の素数さん
22/11/14 17:32:55.90 WBNGn+Mq.net
>>326
>別スレ立てる必要はない
お前が決めることじゃない
気持ち悪い奴だな
356:132人目の素数さん
22/11/14 18:32:31.38 1eFF/Cps.net
半線型波動方程式だった
或る意味で、著者の溝畑氏は現在の非線形 pde の成り行きを
予見していたとも取れるテキストを書いていたことになる
357:現代数学の系譜 雑談
22/11/14 18:42:22.06 dTQYGy3N.net
>>326-328
どうも
スレ主です
このスレで良いよ
溝畑本とかDPEとか
どうせ、落書き掲示板だよ、5CHは
358:132人目の素数さん
22/11/14 19:13:06.14 6ZDYhC/l.net
>>329
>>302には答えないの?
また言葉が通じないサルのふり?
359:132人目の素数さん
22/11/14 20:47:39.44 rN0xlW0K.net
>>329
おまえが失せろ 馬鹿w
360:132人目の素数さん
22/11/14 20:48:43.68 rN0xlW0K.net
>>329
>どうせ、落書き掲示板だよ、5CHは
💩中卒の1、完全発狂wwwwwww
361:132人目の素数さん
22/11/14 20:49:33.52 rN0xlW0K.net
現代数学の系譜 雑談 ◆yH25M02vWFhP 死す!!!
362:現代数学の系譜 雑談
22/11/14 20:59:42.85 dzWu9uQc.net
>>323
>「○○仕様の戦略なら勝てる」
>という主張に対して
>「××仕様の戦略なら勝てない」
>が反論になってると本気で思ってるなら白痴としか言い様が無い
1)仕様だ? バカか
時枝>>1 より
(引用開始)
スレリンク(math板:401番)
時枝問題(数学セミナー201511月号の記事)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
(引用終り)
2)答えは簡単、
単純な
Y or N の二択問題です
当然、Nですよ!!
3)例えば、
・箱一つ、箱の中の数を書けずに当てられる? 答えは、N
・箱任意の有限n個、箱の中の数を書けずに当てられる? 答えは、N
・箱n→∞でどうなる?
箱の中の数を書けずに当てられる? 答えは、当然Nでしょw
(無限数列のしっぽの同値類なんて、ゴマカシでしかないよね。頭が正常な人は、これが分かりますよw)
363:132人目の素数さん
22/11/14 21:35:34.20 rN0xlW0K.net
>>334
>バカか
馬鹿は日本語も読めないニホンザルの貴様www
364:132人目の素数さん
22/11/14 21:39:53.66 rN0xlW0K.net
>>334
>頭が正常な人は、これが分かりますよw
雑談 ◆yH25M02vWFhP の頭は正常でない
ここの連中はみんな分かってる
ただ当人だけが「ボクちゃん、数学の大天才!!!」と自惚れてるwww
365:現代数学の系譜 雑談
22/11/14 21:40:08.76 dzWu9uQc.net
>>334 タイポ訂正
・箱一つ、箱の中の数を書けずに当てられる? 答えは、N
・箱任意の有限n個、箱の中の数を書けずに当てられる? 答えは、N
・箱n→∞でどうなる?
箱の中の数を書けずに当てられる? 答えは、当然Nでしょw
↓
・箱一つ、箱の中の数を開けずに当てられる? 答えは、N
・箱任意の有限n個、箱の中の数を開けずに当てられる? 答えは、N
・箱n→∞でどうなる?
箱の中の数を開けずに当てられる? 答えは、当然Nでしょw
分かると思うが(^^
366:132人目の素数さん
22/11/14 21:43:16.59 rN0xlW0K.net
雑談 ◆yH25M02vWFhP の頭の程度
1.任意の正方行列は逆行列を持つ!
余因子行列の公式で求まる!
と豪語w
2.無限乗積Πanについて、
anが全部1より大きいならば必ず∞に発散
anが全部1より小さいならば必ず0に発散
と豪語w
大学数学の初歩から間違う、正真正銘の馬鹿www
それが雑談 ◆yH25M02vWFhP
367:132人目の素数さん
22/11/14 21:44:06.41 rN0xlW0K.net
>>337
>分かると思うが
分からんね 日本語も読めないサルのいうことはwww
368:132人目の素数さん
22/11/14 21:48:57.87 rN0xlW0K.net
ちなみに
ボーダー(境界域)
知能指数は70 - 85程度(精神年齢に換算すると11歳3か月以上12歳9か月未満)。
知的障害者とは認定されない。
ま、85-94でも、大学数学は無理だな
数学板に書きたかったらIQ105はないとなw
369:132人目の素数さん
22/11/14 21:57:00.20 WaGhWUGG.net
>>337
>・箱一つ、箱の中の数を開けずに当てられる? 答えは、N
>・箱任意の有限n個、箱の中の数を開けずに当てられる? 答えは、N
>・箱n→∞でどうなる?
> 箱の中の数を開けずに当てられる? 答えは、当然Nでしょw
全く同じ屁理屈により、100人の回答者バージョンでも
「100人全てが箱の数を開けずに当てられない」
ことになる。しかし、スレ主は100人の回答者バージョンなら
100人中99人以上が推測に成功することを認めている。
つまり、スレ主のやってることはダブルスタンダード。
370:132人目の素数さん
22/11/14 21:59:03.69 WaGhWUGG.net
「100人の回答者バージョンは間違っている」
「確率バージョンも間違っている」
「バナッハ・タルスキーのパラドックスも間違っている」
「そもそも選択公理は間違っている」
ここまで立場が一貫してたら、何も言うことはないけどね。
でもスレ主は違うからね。スレ主がやってることはダブルスタンダードだからね。
371:132人目の素数さん
22/11/14 22:02:35.77 6ZDYhC/l.net
>>334
>1)仕様だ? バカか
仕様も分からんのか
これだから言葉の通じんサルは
>無限数列のしっぽの同値類なんて、ゴマカシでしかないよね。頭が正常な人は、これが分かりますよw
だからゴマカシだと思うなら証明の誤りを具体的に指摘せよ
おまえはただ駄々こねてるだけ 3歳児かおまえは
372:現代数学の系譜 雑談
22/11/14 22:04:07.20 dzWu9uQc.net
>>334 >>337 補足
> ・箱n→∞でどうなる?
> 箱の中の数を書けずに当てられる? 答えは、当然Nでしょw
> (無限数列のしっぽの同値類なんて、ゴマカシでしかないよね。頭が正常な人は、これが分かりますよw)
1)もし、可算無限数列において、
その中の一つを、他の(数列の中の)数を使って、
確率99%以上の任意の高確率でピンポイント的中できるとする
2)この話は、>>155-157に書いたが
”不連続で良い
実関数f:[0,1]→R を考える”>>155
3)区間[0,1]内に、可算無限数列 a1,a2,・・an・・ などいくらでも取れる(自明です)
これから、関数の値の可算無限数列 f(a1),f(a2),・・f(an)・・ ができる
これに時枝>>1を適用すると、ある関数値f(ai) i∈N が、
数列の他の値から、確率99%以上の任意の高確率でピンポイント的中できることになる
(不連続関数だから、明らかに、これはおかしいよねw)
しかも、繰り返すが、
このような可算無限数列 a1,a2,・・an・・ は、
区間[0,1]内に至るところに取れる
また、区間[0,1]内に限らず、
任意の区間で、
至る所で成り立つことになる
4)時枝>>1が正しいと仮定すれば、
こんなデタラメなことになる
この異常さが分からないなら
数理の感覚が狂っているとしか、
言えないだろう!w >>198
373:132人目の素数さん
22/11/14 22:09:55.81 WaGhWUGG.net
1つの箱だけの場合に当てられないのは、それが時枝記事の設定を踏襲してないから。
n個の箱だけの場合に当てられないのは、それが時枝記事の設定を踏襲してないから。
このように、国語のできないバカは時枝記事と無関係の設定を語り、存在しない敵と戦いだす。
無論、それでは時枝記事への反論にならない。
可算無限個の箱で、かつ時枝記事の設定を踏襲しているなら、何らかの箱の中身を当てられる。
実際、時枝記事では "(T,s)-時枝ゲーム" が開催されるのであり、
そのゲームでの回答者の勝率は 99/100 以上である。この事実は覆せない。
6-ゲームでの回答者の勝率が 1-1/6 であるという事実が覆せないのと同じ。
さらに、100人の回答者バージョンなら100人中99人以上が推測に成功し、
こちらはスレ主も認めている。
スレ主は一体いつまで時枝記事を誤読し続けるんだろうな。
スレ主は国語ができないバカだから、一生 誤読し続けるのかな。哀れなり。
374:132人目の素数さん
22/11/14 22:14:27.00 WaGhWUGG.net
>>344
具体的に反論できなくなったスレ主、再び
「こんなバカげたことが本当に起きるだろうか?」
と感情論に訴えている。しかし、そんなスレ主でも
・ 時枝記事における100人の回答者バージョン
・ >>7-16(連続版)における100人の回答者バージョン
については、正しいことを認めている。
つまり、スレ主がやっていることはダブルスタンダードである。
数理の感覚が狂っているとはこういうことを指す。
ダブルスタンダードという究極の非論理性こそ、数理の感覚が狂っているのである。
つまり、スレ主の数理的感覚が狂っているのである。
375:132人目の素数さん
22/11/15 00:50:38.06 4UMzuTYm.net
>>344
>この異常さが分からないなら
>数理の感覚が狂っているとしか、
>言えないだろう!w >>198
また感情論か
証明の誤りはいつになったら示すのか
376:132人目の素数さん
22/11/15 01:47:44.15 qbwjmu1w.net
同じ実数列で100回試行したり100人で試行したりするって当たって当たり前な気もするんだよね
たとえば自分が全部開けた列の列番号と先頭の箱の中の実数ととを専用のSNSグループに投稿して最後に残った列を開ける前にSNSグループの投稿内に残った列の列番号が有ったら先頭の箱の実数を開ける前に答えることができる
377:132人目の素数さん
22/11/15 02:36:36.63 4UMzuTYm.net
>>348
There is no communication between mathematicians after the game has started
URLリンク(mathoverflow.net)
378:132人目の素数さん
22/11/15 05:13:56.54 0l/16VXN.net
>>345
>1つの箱だけの場合に当てられないのは、
1={0}に最大元0が存在するからw
>n個の箱だけの場合に当てられないのは、
n={0,・・・,n-1}に最大元n-1が存在するからw
そして、無限個の箱の場合に当てられるのは
N={0,1,・・・}には最大元∞なんて存在しないから!www
いい加減気づけよ、馬鹿
379:132人目の素数さん
22/11/15 05:16:54.37 0l/16VXN.net
>>348
カンニング禁止なw
380:132人目の素数さん
22/11/15 05:21:51.92 0l/16VXN.net
>「バナッハ・タルスキーのパラドックスも間違っている」
階数2以上の自由群が自然に埋め込まれてる場合
選択公理すら用いずにバナッハ・タルスキのパラドックスが示せる
またR全体を1とする測度を考えた場合、区間[0,1)は非可測である
なぜなら[-1,0)や[1,2)も同じ量の筈で、Rはその可算和となるが
0だとすれば可算和も0だし、0でないなら可算和は∞だから
381:132人目の素数さん
22/11/15 05:28:40.26 0l/16VXN.net
任意の正方行列は逆行列を持つ、とほざく
雑談 ◆yH25M02vWFhP に数理の感覚なんて全く無いw
行列式がどんなものか全く理解できなかったんだろうwww
382:現代数学の系譜 雑談
22/11/15 07:48:15.61 9Sqq12HI.net
>>336
> ここの連中はみんな分かってる
そうだよ
分かってないのは、あんたを含めた多分二人だけw
> ただ当人だけが「ボクちゃん、数学の大天才!!!」と自惚れてるwww
中高一貫校なら、中一でも気づくよ
「なんかおかしい」ってね、>>344を見れば
それが理解できない 数学科落ちこぼれ氏に言われてもなぁ~
あんた、おかしいよ、数理のセンス
かわいそうにw
383:現代数学の系譜 雑談
22/11/15 07:54:57.33 9Sqq12HI.net
>>344 補足
> 2)この話は、>>155-157に書いたが
> ”不連続で良い
> 実関数f:[0,1]→R を考える”>>155
1)もし、連続関数ならば
可算無限数列 a1,a2,・・an・・ の存在区間を
少し大きく取れば良い
関数の値の可算無限数列 f(a1),f(a2),・・f(an)・・
の相関が無いように大きく取れば良い
(必要ならば区間[0,1]は、もっと一般に[a,b]とできる)
2)勿論ここで考えているのは、一般の連続関数で
解析関数や微分可能な関数は除くだ
時枝記事>>1が正しければ
こんなおかしなことが起きる
この単純な話が
理解できない人たちがいるんだw
384:132人目の素数さん
22/11/15 07:59:07.64 0l/16VXN.net
>>354
>中高一貫校なら、中一でも気づくよ
工業高校って中高一貫だっけ?www
>「なんかおかしい」ってね、344を見れば
なんかじゃなくおかしいのは 雑談 貴様だよ
>あんた、おかしいよ、数理のセンス
任意の正方行列は逆行列を持つ、と豪語した雑談には、数理のセンスがゼロwww
385:132人目の素数さん
22/11/15 08:01:56.32 0l/16VXN.net
>>355
>関数の値の可算無限数列の相関が無いように
なにトンチンカンなこといってんだ、この雑談とかいう白知野郎はwww
386:132人目の素数さん
22/11/15 10:26:44.86 zCRygKTg.net
>>303
ベルトランの逆説の正解は0なw
双曲平面の境界円の点同士を結ぶ弦の長さは無限大だからw
387:現代数学の系譜 雑談
22/11/15 10:35:03.61 RUmep2sH.net
>>355 補足
> 1)もし、連続関数ならば
> 可算無限数列 a1,a2,・・an・・ の存在区間を
> 少し大きく取れば良い
> 関数の値の可算無限数列 f(a1),f(a2),・・f(an)・・
> の相関が無いように大きく取れば良い
> (必要ならば区間[0,1]は、もっと一般に[a,b]とできる)
1)数列は平行移動ができる
例えば、±εを使って、an±ε→f(an±ε) |0<ε とできる
数直線R上どこへでも移動可能だし
εを小さくとれば、至るところ、時枝>>1の的中だらけw
2)もっと一般に、拡大を入れた線形変換で移せる
例えば、α・an±ε→f(an±ε) とすれば
一つの可算無限数列 a1,a2,・・an・・ を使って
数直線R上の至るところに、時枝>>1の的中を蔓延らせることが可能
3)蛇足だが、可算無限数列 a1,a2,・・an・・ は一例で
可算無限数列 b1,b2,・・bn・・ などといくらでも可能
上記は、連続関数だが
勿論、不連続関数でも同様
本来なんの相関もない a1,a2,・・an・・ で
ある ai が、他の値から確率99%以上の高確率で、
的中(あるいは推測)できる?
しかも、それは数直線R上の至るところで起きる?
バカも休み休みに言えって話ですよね
こんなバカ話を真に受けるやつの数理センス疑うぜよww
388:現代数学の系譜 雑談
22/11/15 10:50:24.05 RUmep2sH.net
>>358
>ベルトランの逆説の正解は0なw
>双曲平面の境界円の点同士を結ぶ弦の長さは無限大だからw
どうもありがとう
スレ主です
こういうとき
英語wikipedia記事(下記)を見ておくのが
定番ですね
(参考) >>292 ベルトランの逆説日本語版から、英語記事へ飛ぶと下記
URLリンク(en.wikipedia.org)(probability)
Bertrand paradox (probability)
Contents
1 Bertrand's formulation of the problem
2 Classical solution
3 Jaynes's solution using the "maximum ignorance" principle
4 Physical experiments
5 Recent developments
Recent developments
In his 2007 paper, "Bertrand’s Paradox and the Principle of Indifference",[2] Nicholas Shackel affirms that after more than a century the paradox remains unresolved, and continues to stand in refutation of the principle of indifference.
Shackel[2] emphasizes that two different approaches have been generally adopted so far in trying to solve Bertrand's paradox:
略
However, in a recent work, "Solving the hard problem of Bertrand's paradox",[9] Diederik Aerts and Massimiliano Sassoli de Bianchi consider that a mixed strategy is necessary to tackle Bertrand's paradox.
略
389:132人目の素数さん
22/11/15 10:58:20.39 qvKLiF3V.net
>>360
で、なんで0か理解したか?
正解はwikipediaには書いてないぞ
愚かにもユークリッド幾何で考えてるからな
390:現代数学の系譜 雑談
22/11/15 12:05:28.36 RUmep2sH.net
>>361
どうもありがとう
スレ主です
>愚かにもユークリッド幾何で考えてるからな
意味分からん
391: P→Q で、ベルトランの逆説>>292では、 仮定節Pがユークリッド幾何なのか? で、仮定節Pを書き換えて P’として、双曲平面>>358にすると、ベルトランの逆説の正解は0だって? 1)P→Q(ベルトランの逆説) (ユークリッド幾何) と 2)P'→Q'(正解は0) (双曲平面) 1)と2)は、 両立するだろ
392:現代数学の系譜 雑談
22/11/15 12:10:59.47 RUmep2sH.net
>>359 タイポ訂正
例えば、α・an±ε→f(an±ε) とすれば
↓
例えば、α・an±ε→f(α・an±ε) とすれば
分かると思うが(^^
393:132人目の素数さん
22/11/15 12:18:37.01 4UMzuTYm.net
>>354
また感情論か
証明の誤りはいつになったら示すのか
394:132人目の素数さん
22/11/15 12:19:44.58 4UMzuTYm.net
>>355
また感情論か
証明の誤りはいつになったら示すのか
395:132人目の素数さん
22/11/15 12:22:39.28 4UMzuTYm.net
>>359
また感情論か
証明の誤りはいつになったら示すのか
396:132人目の素数さん
22/11/15 12:28:27.22 4UMzuTYm.net
証明の誤りを指摘できないならそこで話は終了 愚図るな おまえは3歳児か
397:132人目の素数さん
22/11/15 15:03:59.91 JaTpvSff.net
>>362
>>愚かにもユークリッド幾何で考えてるからな
>意味分からん
考えぬ者には分からぬよ
双曲幾何では境界円の如何なる弦も合同
それが答えだ
398:現代数学の系譜 雑談
22/11/15 17:32:58.70 RUmep2sH.net
>>362 補足
1)下記 「幾何学の相補性
楕円・放物・双曲の各幾何学は、互いに他を否定する存在ではなく、いわば並行に存在しうる幾何学であることを注意しておきたい」
とあるよ
2)「平行線の数 0本 1本 2本以上」
と異なっても、それは矛盾ではない
3)ベルトランの逆説>>292 が、もとは「ユークリッド幾何学(放物幾何学)」に立脚するとして
「双曲幾何学でどうなるか」は、詳しくは知らないが、ユークリッド幾何学(放物幾何学)と異なる結論もありじゃね?w
(参考)
URLリンク(ja.wikipedia.org)
非ユークリッド幾何学
研究結果
結論 楕円幾何学 ユークリッド幾何学(放物幾何学) 双曲幾何学
平行線の数 0本 1本 2本以上
代表的なモデル リーマン球面 ユークリッド平面 擬球面
幾何学の相補性
楕円・放物・双曲の各幾何学は、互いに他を否定する存在ではなく、いわば並行に存在しうる幾何学であることを注意しておきたい。各幾何は、それぞれ他の幾何の中に(少なくとも局所的には)モデルを持ち、したがって互いに他の体系の正当性を保証することになるからである。
特に楕円・放物・双曲の各幾何学はユークリッド幾何学の上にモデルが作られる。よって理論Tに対してTが無矛盾であることとTのモデルが存在することは同値というよく知られた事実により、「ユークリッド幾何学が無矛盾な体系であれば他の幾何学も無矛盾」ということがわかる。
ここでユークリッド幾何学は座標を用いることによって代数的に扱えることからユークリッド幾何学の無矛盾性は実数体の理論の無矛盾性に帰着されることを注意しておく。
399:現代数学の系譜 雑談
22/11/15 21:29:10.37 9Sqq12HI.net
>>365-367
証明の誤り指摘だぁ?ww
反例提示も兼ねているんだよww>>359
400:現代数学の系譜 雑談
22/11/15 23:44:47.12 9Sqq12HI.net
>>370 補足
>反例提示も兼ねているんだよww>>359
1)”反例”という表現は不適切か
2)正しくは、一般の不連続関数を考えた場合
あるx=aiに対する値f(ai)は、他の値とは無相関と考えられる
ところが、時枝>>1が正しいとすると、矛盾が起きるってことだ
3)矛盾とは、時枝>>1が正しいとすると
「値f(ai)が、f(a1),f(a2),・・f(an)・・たち(除くf(ai))を使って
確率1-ε (確率99%でも、あるいはそれ以上 例えば99.9999%)で、値f(ai)が決められる」
ということ。つまり、
「f(a1),f(a2),・・f(an)・・たち(含むf(ai))は無相関」だったのに
時枝>>1が正しいと、「相関がある」ことになり、矛盾!
4)背理法の変形みたいなものか
「時枝>>1が正しい」と仮定すると、矛盾
よって、「時枝>>1が正しい」は否定される!
QEDw
401:132人目の素数さん
22/11/15 23:59:20.75 ulLm3RVN.net
>3)矛盾とは、時枝>>1が正しいとすると
> 「値f(ai)が、f(a1),f(a2),・・f(an)・・たち(除くf(ai))を使って
> 確率1-ε (確率99%でも、あるいはそれ以上 例えば99.9999%)で、値f(ai)が決められる」
> ということ。つまり、
> 「f(a1),f(a2),・・f(an)・・たち(含むf(ai))は無相関」だったのに
> 時枝>>1が正しいと、「相関がある」ことになり、矛盾!
全く同じ屁理屈により、100人バージョンの場合は
・ f(a1),f(a2),・・f(an)・・たちを使って、
100人の回答者のうち99人は何らかの値f(a_i)を決められる
ということになる。これはスレ主によれば矛盾なのだった。
しかし、スレ主は100人バージョンなら正しいと認めている。
はい、ダブルスタンダード。
スレ主は数理的感覚が狂っている。
402:132人目の素数さん
22/11/16 01:32:29.33 y1CnMSpx.net
>>371
>3)矛盾とは、時枝>>1が正しいとすると
> 「値f(ai)が、f(a1),f(a2),・・f(an)・・たち(除くf(ai))を使って
> 確率1-ε (確率99%でも、あるいはそれ以上 例えば99.9999%)で、値f(ai)が決められる」
「時枝戦略で関数値を決められる」は盛大な誤解。
正しくは「中身(何等かの関数値であってもかまわない)を予想する箱iを時枝戦略で決めたとき的中確率は1-ε以上」
> 「f(a1),f(a2),・・f(an)・・たち(含むf(ai))は無相関」だったのに
> 時枝>>1が正しいと、「相関がある」ことになり、矛盾!
盛大に誤解してるだけ。矛盾でもなんでもない。
疑うべきは時枝戦略より自分の頭
どんな頭ならあんなバカな誤解するんだ?
403:132人目の素数さん
22/11/16 01:35:28.17 y1CnMSpx.net
>>370
>反例提示も兼ねているんだよww>>359
反例でも矛盾でもない
時枝戦略を盛大に誤解しているだけ>>373
404:132人目の素数さん
22/11/16 06:13:17.82 IgOcdaMi.net
>>371
>「値f(ai)が、f(a1),f(a2),・・f(an)・・たち(除くf(ai))を使って
> 確率1-ε (確率99%でも、あるいはそれ以上 例えば99.9999%)で、決められる」
はい誤読
具体的にいうと、回答者が勝手にaiを選べると読んだのが誤り
1ってホント日本語も正しく読めないサルなんだなw
箱入り無数目の文章の正しい読み方
1.f(a1),f(a2),・・f(an)・・、に対して
あるm∈Nから先の項が皆一致するような
g(a1),g(a2),・・g(an)・・ を同値とする
2.上記の同値類から、選択公理により、必ず代表がとれる
代表は同値類のどの元とも同値である
3.f(a1),f(a2),・・f(an)・・、に対して
どの l∈Nから先の全ての元をとっても
その情報から自分が属する同値類の代表元がとれる
4.n>=mなら、f(n)=g(n)だから、
l>n>=mなるnは、lから先の情報を知るだけで当てられる
つまりaiは、mより大きくなければならない
まあ、どんな自然数mについても、ほとんどすべての自然数はmより大きいがね
(ほとんどすべて=たかだか有限の例外を除くw)