スレタイ 箱入り無数目を語る部屋3at MATH
スレタイ 箱入り無数目を語る部屋3 - 暇つぶし2ch684: だから、有限小数のコーシー列は無限に続かなければならない しかし、有限小数環の中には、無理数は存在しない。だから、無限列だが、πには決して到達しない(可能無限) 同じように、多項式環を使って、超越関数 例えば 指数関数 e^x に収束するコーシー列を作ることができる e^x=Σn=0~∞ (x^n)/n!=1+x+(x^2)/2!+(x^3)/3!+・・・ この冪級数を使って、多項式のコーシー列を作ることができることは自明だろう 多項式環の中には、超越関数は含まれない だから、多項式のコーシー列が、指数関数 e^xに到達することはない(可能無限) しかし、多項式のコーシー列によって完備化され、形式的冪級数環が出来る(有限小数のコーシー列で完備化でき実数が出来るのと同様だ) ここらは、デリケートで難しい話だ これが分からない人がいても、不思議では無い!w




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch