スレタイ 箱入り無数目を語る部屋3at MATHスレタイ 箱入り無数目を語る部屋3 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト1:132人目の素数さん 22/08/13 16:51:12.04 d42KNd2H.net 前スレが1000近くなったので、新スレを立てる 前スレ 箱入り無数目を語る部屋2 https://rio2016.5ch.net/test/read.cgi/math/1629325917/ (参考) 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 純粋・応用数学(含むガロア理論)8 https://rio2016.5ch.net/test/read.cgi/math/1620904362/401 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis (Denis質問) I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. (Pruss氏) The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate. (Huynh氏) If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. つづく 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch