22/11/22 12:32:37.25 7dgkSszV.net
平行四辺形と平行六面体のn次元への一般化ってなんていうの?
2次元→平行四辺形
3次元→平行六面体
n次元→?
ウィキペディアによると「平行多面体」は違う意味で使われてるらしい(ゾーン多面体がなんたらかんたら)
1025:132人目の素数さん
22/11/22 12:51:44.28 73WiJEGg.net
n次元ユークリッド空間の図形で名前ついてる方が少ないかついててもすごいマイナーなやつしかないやろ
結局“本稿では××の図形を××と呼ぶ”みたいに一々全部断り書きつけるしかない
そんなマイナーな単語使って通用するのは便所の落書きくらい
1026:132人目の素数さん
22/11/22 14:27:39.06 mWFOCqFM.net
>>984
そうなんか、サンクス
1027:132人目の素数さん
22/11/22 16:19:49.73 SS5lOObG.net
線形回帰分析で
回帰直線への距離で最小二乗法して算出した回帰直線の決定係数の算出の仕方を教えてください。
主成分回帰やダミング回帰で調べてもなかなか辿り着きません 検索ワードだけでも教えていただければ幸いです。
1028:132人目の素数さん
22/11/22 22:32:16.64 ZYnWiMO4.net
>>983
行列式で一般面積一般体積出せる超平行単体のシークエンスの母関数ならぬ母空間でも考えとるんか?。
1029:132人目の素数さん
22/11/22 23:33:47.40 DAMbwnXZ.net
>>986
y=ax+bが(xi,yi)とのズレがaxi+b-yiなので2乗して(axi+b-yi)^2でf(a,b)=Σ(axi+b-yi)^2が最小になるようにa,bを決めればいいんでしょ?
1030:132人目の素数さん
22/11/22 23:39:58.00 lKi1s1Vx.net
>>988
それ回帰直線の出し方じゃないです?
かと言って決定係数わからないですけど
1031:132人目の素数さん
22/11/22 23:53:41.80 qlFg3LTl.net
どうゆうこっちゃ?
つまりΣ| axᵢ - yᵢ +b |²/(a²+b²)が最小になるa,b?
1032:132人目の素数さん
22/11/23 00:54:26.00 qwgFP4ly.net
>>990
の意味でいいなら
S = Σ | xᵢ cosθ + yᵢ sinθ + c |²
= nc² + 2c Σ (xᵢ cosθ + yᵢ sinθ)
+ Σ ( xᵢ cosθ + yᵢ sinθ )²
はc = -1/nΣ (xᵢ cosθ + yᵢ sinθ)のとき最小値
- ((Σ (xᵢ cosθ + yᵢ sinθ))²/n
+ Σ ( xᵢ cosθ + yᵢ sinθ )²
= ( -(Σxᵢ)²/n + Σxᵢ² ) cos²θ
+( -( Σxᵢ )( Σyᵢ )/n + Σxᵢyᵢ) )2sinθcosθ
+ ( -(Σyᵢ)²/n + Σyᵢ² ) sin²θ
なのでこれを最小にするθを求めればいいのではなかろか
1033:132人目の素数さん
22/11/23 00:56:18.40 62ydA4JG.net
>>989
?
1034:132人目の素数さん
22/11/23 00:58:07.58 62ydA4JG.net
>>990
距離^2なら分母は1+a^2では?
1035:132人目の素数さん
22/11/23 01:05:46.27 qwgFP4ly.net
まぁでも>>990のような意味にとるのはそもそも統計学的におかしいからな
いわゆる(xᵢ,yᵢ)という散布図の計量なんて特に意味はないからそこで測った距離の二乗和が最小とかそもそも意味ない感はある
例えばいわゆる“相関係数”とかが理論的に望ましいのは2つの
1036:統計量を定数倍とか定数出すとかの変換で不変で、言ってみれば2つの統計量を“測る単位”に普遍に値が決まるのが魅力的で横軸の統計量の“単位”を変えても答え同じというのがいい しかし“その直線までの距離の二乗の和が最小となる直線”とかその手の変換で不変ではないからな しかしΣ|axᵢ+b -yᵢ|²が最小となるa,bはある意味その手のスケール変換で不変に保たれるからこっちの方が優れてるんだけどな
1037:132人目の素数さん
22/11/23 01:07:49.97 qwgFP4ly.net
>>993
ax+by+cと(p,q)の距離は
| ap + bq + c |²/√(a²+b²)
法線ベクトルの長さ1にしてるので分母を考えなくていい
1038:132人目の素数さん
22/11/23 05:35:35.47 re4Vphli.net
決定係数がわからないんならそれで検索すればいいだろ。
>>995
それのbが-1だろ。
1039:132人目の素数さん
22/11/23 09:02:21.02 24O4/fxk.net
>>996
違うって
求めたいのは直線やろ?
その直線の方程式をy = ax + bとおくか、x cosθ+ysinθ+c =0とおくかは自由においていいやろ?
必要なら後でy = ax+bに直せばいいんやから
1040:132人目の素数さん
22/11/23 09:22:15.49 24O4/fxk.net
つまり普通はa,bを変数としてΣ(axᵢ-yᵢ)²を最小にするa,bを求めるけど(wikiでは“残差の平方和”と表現している)けど、そうじゃなくてΣ(axᵢ-yᵢ)²/(a²+1)を最小にするa,bを求めたいと言ってるんじゃないの、で前者ですらどうやればいいかわからないと言ってるのが>>989じゃないの?
1041:132人目の素数さん
22/11/23 09:29:30.77 re4Vphli.net
>>997
>つまりΣ| axᵢ - yᵢ +b |²/(a²+b²)が最小になるa,b?
>| ap + bq + c |²/√(a²+b²)
上は下のa,b,cにa,-1,bを入れたんだから分母は√(a²+(-1)²)。
あとまず決定係数で検索しろ。
1042:132人目の素数さん
22/11/23 09:36:53.81 24O4/fxk.net
ダメだ
コイツ理解できる知能ないわ
1043:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 110日 10時間 7分 26秒
1044:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています