大学学部レベル質問スレ 19単位目at MATH
大学学部レベル質問スレ 19単位目 - 暇つぶし2ch816:132人目の素数さん
22/11/03 18:51:25.51 W8+pts07.net
確率を本当に厳密に定義したいなら測度論が必要になりますからね
高校生には理解できないので、古典的な確率の話が乗っているのです
現代ではもっと洗練された定義があります

817:132人目の素数さん
22/11/04 10:42:25.02 t/r8XJTm.net
>>781
 逐次積分≠重積分
ってのは
 全ての変数について(偏)連続≠多変数の(同時)連続
 全ての変数について偏微分可能≠全微分可能
ってのと似たような意味で全然違う概念を指してるってことだよ

818:132人目の素数さん
22/11/06 10:10:03.58 5beEPlYr.net
I を区間とする。
f を I ∩ Q で定義された関数とし、以下の条件を満たすとする:
任意の正の実数を ε としたとき、 x, y ∈ I ∩ Q かつ |x - y| < δ ⇒ |f(x) - f(y)| < ε を満たすような正の実数 δ が存在する。
(1) x ∈ I とする。 {x_n} を x_n ∈ I ∩ Q であり、 x_n → x であるような数列とする。
このとき、 {f(x_n)} は収束することを示せ。
(2) {f(x_n)} の収束値は、数列 {x_n} の選択には依存しないことを示せ。
{f(x_n)} の収束値を f^{*}(x) とする。f^{*}(x) = f(x) for x ∈ I ∩ Q だから f^{*} は f の拡張になっている。
(3) f^{*} は I 上で一様連続であることを示せ。

819:132人目の素数さん
22/11/06 19:16:58.69 5beEPlYr.net
0 < a とする。
有理数 x に対して、 a^x の定義やその基本的な性質については知っていると仮定する。
f : Q → R を f(x) = a^x で定義する。

(1) x, y を x < y であるような有理数とする。
1 < a ⇒ a^x < a^y
0 < a < 1 ⇒ a^y < a^x
がそれぞれ成り立つことを証明せよ。
(2) 任意の正の実数 ε に対して、 |a^x - 1| < ε が 0 に十分近いすべての有理数 x に対して成り立つことを証明せよ。
(3) 等式 a^x - a^y = a^y * (a^{x - y} - 1) を利用して、 I を任意の閉区間上とするとき、以下が成り立つことを証明せよ:
任意の正の実数を ε としたとき、 x, y ∈ I ∩ Q かつ |x - y| < δ ⇒ |f(x) - f(y)| < ε を満たすような正の実数 δ が存在する。
(4) f に対して、 >>787 の f^{*} を考える。 f^{*} は 1 < a であるとき、単調増加関数であり、 0 < a < 1 であるとき、単調減少関数であることを証明せよ。さらに、 f^{*}(x + y) = f^{*}(x) * f^{*}(y) が成り立つことを証明せよ。

820:132人目の素数さん
22/11/06 20:28:11.31 aAZny+py.net
(1)基本的な性質より
(2)基本的な性質より
(3)基本的な性質より
(4)基本的な性質より

821:132人目の素数さん
22/11/07 07:48:05.32 /JWvkJfq.net
笠原さんの『微分積分学』のロピタルの定理のステートメントの記述ですが、
まずいところがありますね。
f(x)/g(x) の g(x) が 0 にならないと仮定していますが、これだと g'(x) が 0 になってしまう可能性があります。
そうではなく、 g'(x) が 0 にならないという仮定をすべきです。
そうすれば、自動的に g(x) は 0 になりません。

822:132人目の素数さん
22/11/07 07:49:47.16 /O7D42WP.net
>>790
>> g'(x) が 0 にならないという仮定をすべきです。
>>そうすれば、自動的に g(x) は 0 になりません。
なぜですか?

823:132人目の素数さん
22/11/07 07:58:43.85 /JWvkJfq.net
g(x) は、 x → x_0+ のとき無限小であるから、 g(x_0) := 0 と定義すると、
g(x) は、 x = x_0 で連続になる。
平均値の定理により、 g(x) は 0 にならないことが分かる。

824:132人目の素数さん
22/11/07 08:04:00.25 /JWvkJfq.net
笠原さんの本ですが、コーシーの平均値の定理のステートメントにおける仮定も同様に妙なものになっています。

825:132人目の素数さん
22/11/07 08:06:46.09 /O7D42WP.net
>>792
>>g(x) は、 x → x_0+ のとき無限小であるから、 g(x_0) := 0 と定義すると、
>>g(x) は、 x = x_0 で連続になる。
>>平均値の定理により、 g(x) は 0 にならないことが分かる。
「g(x) は 0 にならない」は「g(x_0) := 0 」と両立しないように思いますが
違いますか?

826:132人目の素数さん
22/11/07 08:07:51.10 /O7D42WP.net
>>793
仮定が誤っている個所を明示していただけますか?

827:132人目の素数さん
22/11/07 08:38:51.75 /JWvkJfq.net
x_0 の右近傍 (x_0, b) で g(x) が 0 でなくても、 g'(x) が x_0 の任意の右近傍 (x_0, b') で
0 になることがあります。

828:132人目の素数さん
22/11/07 08:39:18.78 8yAwXDdq.net
>>789
まさにそれだけど
学部生にやらせるには
なかなか良さげな

829:132人目の素数さん
22/11/07 09:55:59.69 NgHOXSSh.net
”ロピタルの定理”と名付けられた定理の紹介する状況なら勝手にステートメントは変えられない
それが明らかに同値とわかる場合なら変えても許されるが(十分極限値に近いxにおいては)g(x)≠0とg'(x)=0が同値となる事が自明、容易という状況ではないから変えられない

830:132人目の素数さん
22/11/07 12:16:44.16 KiVjt9l5.net
そのこころは?
lestroarmonico@mathraphsody
数学ほど恐ろしく役に立つものはない.
役に立つとき,それは時として真に恐ろしいものになりうる.それはすでにアーノルドが指摘した.
「すべての数学は流体力学と弾道計算と暗号理論に要約される」

831:132人目の素数さん
22/11/07 13:36:07.54 /JWvkJfq.net
数学のまともな演習書がないのはなぜでしょうか?
微分積分に限っても、よい演習書がないように思います。

832:132人目の素数さん
22/11/07 13:43:25.99 /JWvkJfq.net
杉浦光夫他著『解析演習』
塹江誠夫他著『詳説演習微分積分学』
三村征雄他著『大学演習微分積分学』
福田他著『詳解微積分演習 I, II』
小寺平治著『明解演習微分積分』
を持っていますが、これはいいと言える演習はこの中にはありません。

833:132人目の素数さん
22/11/07 13:44:34.49 Hy7THX4N.net
>>800
演習書で勉強できると思ってる能無しを淘汰するためwww

834:132人目の素数さん
22/11/07 17:03:14.99 xq0QdQh


835:G.net



836:132人目の素数さん
22/11/07 19:52:19.75 8yAwXDdq.net
>>803
例を考えるのが面倒だからだよ
それでも位相空間論とか集合論とかには
途轍もない例がいろいろ載ってて捗る本

837:132人目の素数さん
22/11/08 05:21:53.64 Mb93uGhw.net
結局は売れるかどうか

838:132人目の素数さん
22/11/08 08:04:11.04 JDTPyi11.net
>>803
学部受験感覚で
学習参考書やドリル学習に頼り続けて
思考停止に陥って自分で考えて勉強することをサボってるようなのが
研究ができるとは誰も考えてはいない。

839:132人目の素数さん
22/11/08 08:51:11.56 Zzk2por/.net
>>800
>数学のまともな演習書がないのはなぜ
まともな演習書というのは人により違うのではないかな
沢山の問題載ってるっていう意味なら
マグロウヒル大学演習シリーズとか?

840:132人目の素数さん
22/11/08 08:51:34.20 OVS4KMY4.net
なんで試験問題は正規分布にしたがうように作るの?
GPの割り振りを考えると合格点以上で一様分布になるのが理想に思える

841:132人目の素数さん
22/11/08 09:31:44.63 V6Z+4Dcd.net
元々は中学教師だった桑田昭三が、受け持った生徒が勘で志望校の変更を決められてしまったことを憂いて、
科学的に判定できないのかと考えた末に、あらゆるデータは正規分布に従うというケトレーの法則(中心極限定理が出たあとに影響を受けて主張された法則だが、もちろん現在では間違っている)を使い、
学力分布は正規分布とみなせるはずだ、と仮定して偏差値によって志望校の判定を行った
それが噂として広まり、70年代前半に全国に広まった
仮に正規分布になるように問題を作ってるとして、本末転倒だしそんなことが可能かも疑わしいが、いずれにしても正規分布に従う必要性は皆無
ただ歴史的にそうなったものを思考停止で使ってるだけ
桑田昭三本人も、偏差値は教育の全てではない、選抜資料として使っているのは同じ国の人間として恥ずかしく思うとまで嘆いてる

842:132人目の素数さん
22/11/08 09:33:39.22 Zzk2por/.net
>>808
>正規分布にしたがうように作る
そんなことしてるかというか
中心極限定理で自然と正規分布になるよ
>合格点以上で一様分布になるのが理想
理想である理由が飲み込めないが
少なくともそういう異様な分布に
するのはかなり無理そうだ

843:132人目の素数さん
22/11/08 09:42:22.09 V6Z+4Dcd.net
>>810
中心極限定理によって、標本平均と母平均の誤差が正規分布になることは言えるが、
標本分布そのものが正規分布になる根拠はない

844:132人目の素数さん
22/11/08 09:43:04.54 8O/8anYl.net
>>808
選抜試験なので合格者の平均が50点くらいで分散がなるべく大きくなるように作る
なるべく受験生の実力を正確に判定するには分散がなるべく大きくなるように作るのが理想、平均がどちらかによると分散も落ちる

845:132人目の素数さん
22/11/08 09:46:24.50 V6Z+4Dcd.net
>>812
平均も分散も任意の確率分布で定義できるので、
その説明は正規分布関係ない

846:132人目の素数さん
22/11/08 10:02:36.41 c2GFqi41.net
>>813
そう、正規分布になるよう作ってるわけではない
そもそも最大値、最小値あ


847:るんだから正規分布になんぞなりようがない なるべく合格者の最低が50店くらい、最小値0,最大値100分散がなるべく大きいというふうに作る その意味での理想は0~100まで一様分布になることだけどもちろん問題の難易度レベル設定だけではそうなるハズもなく、結果合格者最低が中央値にくる部分だけ取り出すと50点が平均の二項分布になるように作る それが受験生が多いと正規分布と見た目に似るというだけ



848:132人目の素数さん
22/11/08 10:21:00.42 Zzk2por/.net
>>811
>中心極限定理によって、標本平均と母平均の誤差が正規分布になることは言える
誤認してるね

849:132人目の素数さん
22/11/08 10:31:07.85 c2GFqi41.net
ちょっと>>814は変だな
例えば倍率が5倍の入試なら上位1/5が50点~100点、下位4/5が0点~50点が理想、さらに分散が大きければ大きいほど良い
結果分布はある程度は正規分布の曲線に似るという話、正規分布を目指すわけではない

850:132人目の素数さん
22/11/09 00:43:55.67 WmCuMeoy.net
>>804
良い問題を作るのにも
才能がいるもんなぁ。
たぶん、人に説明したり設問する能力が低い著者が多いんだろうな。

>>806
演習問題は別に悪くねぇだろ。
演習問題の繰り返しは高度なパターン認識が身につく、
解く事で身についたり、理解するっていうタイプの人の助けになる。
それと思考停止ってwワロタwww
そんな日本語存在しないだろ?
どういう意味ですか?辞書に載ってないんですけど。
英語でなんていうか、わかる?

851:132人目の素数さん
22/11/09 03:12:50.48 eBY3TMUx.net
>>817
そこで自分で考えないからダメなんだよ
脊髄反射で口論ぐらいのレベルの発想な時点でダメッダメ。
ちょっとは自分で考えろ。

852:132人目の素数さん
22/11/09 07:00:03.00 B/DJYwwY.net
>>817
思考停止とは、物事を考えることや、判断することをやめてしまう状態をあらわす言葉です。思考停止は無意識のうちに起こっている場合もあります。
思考停止に陥ってしまう原因は、多くの場合過度のストレスが原因です。

853:132人目の素数さん
22/11/09 07:05:57.89 WmCuMeoy.net
>>819
はい、嘘。
じゃあ、なぜ辞書に載っていないのだ?
英語だと何ていうの?
定義もなく雰囲気で誰かが作った造語でしょ?
くだらん。

854:132人目の素数さん
22/11/09 07:14:12.87 B/DJYwwY.net
最後は、「思考停止」という言葉の由来や成り立ちについてご紹介していきますよ。「思考停止」はネットスラングなどでもなく、考えることの「思考」とやめることの「停止」を合わせたシンプルな成り立ちとなっています。「思考停止」という言葉以外にも、「フリーズ」や「頭が真っ白になる」「なげやりになる」などの言葉で表すことができますよ。
freezeを思考停止すると訳している場合も多そうだ

855:132人目の素数さん
22/11/09 07:36:28.11 fqJAz+yW.net
2つのべき級数の合成がまたべき級数になるということが書いてある微分積分の本が少ないのは
なぜでしょうか?
笠原さんの本には書いてありました。

856:132人目の素数さん
22/11/09 07:39:04.27 fqJAz+yW.net
三村征雄他著『大学演習微分積分学』には、べき級数の逆数がべき級数になるということの
証明が書いてありました。
2つのべき級数の合成がまたべき級数になることは同様に証明できると書いてあります。
確かにそうなんですが、合成のほうを証明しておけば、逆数のほうはその系として自動的
に証明できます。ですので、合成のほうの証明を書くべきだったと思います。

857:132人目の素数さん
22/11/09 07:49:24.65 stGMZ2S2.net
>>817
>たぶん、人に説明したり設問する能力が低い著者が多いんだろうな。
説明はするが理解はそちらの責任
設問は面倒だから細々したことが好きな人にお任せ
て人がほとんどだと思うが

858:132人目の素数さん
22/11/09 08:09:37.03 J+CVlm+7.net
>wワロタwww
そんな日本語存在しないだろ?
どういう意味ですか?辞書に載ってないんですけど。

859:132人目の素数さん
22/11/09 08:21:42.64 stGMZ2S2.net
>>822
>2つのべき級数の合成がまたべき級数になる
|x-a|<rで�


860:羡ゥするべき級数y=f(x)を |y-b|<sで収束するべき級数z=g(y)に |f(a)-b|<sの場合に合成しz=g(f(x))? 無限の項のべき乗の展開はその場で足さずに それを無限に足したときに次数毎にまとめて足す? g(f(c))の値を計算するときはf(c)をf(x)の各項にx=cを代入して足したあとにg(y)の各項にy=f(c)を代入するとなると 足す順序がg(f(x))で次数毎にまとめて足してx=cを代入するのと変わるからなんか面倒くさいなあ 収束考えない形式的な話ならいいだろうけど



861:132人目の素数さん
22/11/09 08:24:31.72 stGMZ2S2.net
>>823
>逆数のほうはその系として
1/f(x)をz=1/yとy=f(x)の合成とするのだろうけど
この場合1/yはどこで展開してもいいのかな
それともy=b=f(a)で展開するのに限定?

862:132人目の素数さん
22/11/09 08:24:35.51 fqJAz+yW.net
(1 + x)^{1/x} = e - (e/2) * x + e * (11/24) * x^2 - e * (7/16) * x^3 + e * (2447/5760) * x^4 ± …
ということを証明したりできて非常に重要だと思います。

863:132人目の素数さん
22/11/09 09:20:59.69 rSjEr+UE.net
証明自体は
その点の近傍で解析的⇔その点の近傍で正則
を使う方が楽だからそんなに意味はない

864:132人目の素数さん
22/11/09 10:12:36.90 fqJAz+yW.net
笠原さんの本のpp.146-147の命題4.24の証明ですが、2重級数についてのこの本では証明されていない
命題を使っています。
それは、正項2重級数 a_{i,j} が収束するとき、 a_{i,j} = 農{i} 農{j} a_{i,j} = 農{j} 農{i} a_{i,j}
が成り立つという命題です。

865:132人目の素数さん
22/11/09 10:19:33.42 fqJAz+yW.net
訂正します:
>>830
それは、
a_{i,j} ≧ 0 とするとき、

農{i} 農{j} a_{i,j}, 農{j} 農{i} a_{i,j} の一方が収束するとき、他方も収束し、
農{i} 農{j} a_{i,j} = 農{i} 農{j} a_{i,j}
であるという命題です。

866:132人目の素数さん
22/11/09 20:18:56.64 8cjaUrTa.net
>>810
それ中心極限定理じゃないよ
得点の分布そのものの話であって標本平均の分布の話ではない
得点の分布が正規分布に似た形になることが多いのは
極端に劣る者や優れる者は少ないという当たり前のことが反映されただけでしょ

867:132人目の素数さん
22/11/09 21:09:04.15 l+ohbC7p.net
多変数関数f:Rm→Rnの微分(フレシェ微分?)ってDfと書くのが標準ですか?f’とも書きますか?

868:132人目の素数さん
22/11/10 10:47:31.63 c1Ki+l2Q.net
あげ

869:132人目の素数さん
22/11/10 13:48:24.62 1gcbxk+I.net
笠原晧司著『微分積分学』
定理に登場する関数についての必要な条件(連続であるなど)が書いてないことがありますね。
こういういい加減なところが嫌ですね。

870:132人目の素数さん
22/11/10 13:50:17.98 1gcbxk+I.net
『対話・微分積分学』を読むと注意深い人なのかなと思ってしまいますが、そうではないですよね。

871:132人目の素数さん
22/11/10 14:16:49.55 6KZhqe4Z.net
はぁそうですかって言われそう

872:132人目の素数さん
22/11/10 18:20:05.78 Jqt7fTZg.net
あげ

873:132人目の素数さん
22/11/10 18:47:48.41 Jzi64XVF.net
その本は出来損ないだ
捨ててしまえ

874:132人目の素数さん
22/11/10 19:08:02.84 4RS2XXwZ.net
時間の速さは毎秒何秒ですか?
秒は普遍ですか?
なんでそうなのですか?
光の速度はなんで3×10^8〔m/sec〕なんですか?

875:132人目の素数さん
22/11/10 19:12:56.33 1uZTZuo8.net
測ったらそうなっていた

876:132人目の素数さん
22/11/10 19:30:38.93 HqjBZ+pd.net
多変数関数f:Rm→Rnの微分(フレシェ微分?)ってDfと書くのが標準ですか?f’とも書きますか?

877:132人目の素数さん
22/11/10 19:34:48.04 2zKzkeFn.net
フレシェ微分はFréchet derivativeと書きますね

878:132人目の素数さん
22/11/10 19:35:24.75 HqjBZ+pd.net
>>843
え?なんだって?

879:132人目の素数さん
22/11/11 11:38:40.82 QXXk3U5V.net
笠原さんの本に、
f(x) = (1 + x)^{1/x} の x → +∞ のときの漸近展開。
log f(x) = (1/x) * log(x) + 1/x^2 + o(1/x^2)
f(x) = 1 + [(1/x) * log(x) + 1/x^2 + o(1/x^2)] + (1/2) * [(1/x) * log(x) + 1/x^2 + o(1/x^2)]^2 + o(1/x^2)
と書かれているのですが、
f(x) = 1 + [(1/x) * log(x) + 1/x^2 + o(1/x^2)] + (1/2) * [(1/x) * log(x) + 1/x^2 + o(1/x^2)]^2 + o(1/x^2)
の最後の項�


880:ェ o(1/x^2) になるのはなぜですか?



881:132人目の素数さん
22/11/11 11:42:12.34 ywXBgazh.net
知らん

882:132人目の素数さん
22/11/11 12:47:45.34 wlJLI17w.net
プライムで微分を表すのは一変数だと思ってる時だけだろ?

883:132人目の素数さん
22/11/11 14:42:24.88 a7T2BLnZ.net
>>847
なんで1変数とn変数で記号が違うんですか?

884:132人目の素数さん
22/11/11 15:12:35.14 kFcBiWah.net
階乗の一般化って複素数の範囲に限ってもガンマ関数以外にも作れそうだけども他にどんなのがあるの?
それとも一意になるならその証明が知りたい

885:132人目の素数さん
22/11/11 17:25:42.96 UXjCDpw9.net
>>849
ボーア・モーレルップの定理

886:132人目の素数さん
22/11/11 18:21:17.83 DoYfqzDg.net
>>848
多変数だとどの変数で微分したかが重要だからです

887:132人目の素数さん
22/11/11 20:23:38.09 PZiuVD7P.net
>>851

どの変数でとかじゃなくて単に「fの微分」ですが

888:132人目の素数さん
22/11/11 20:28:20.05 8aLca1ki.net
わからないんですね

889:132人目の素数さん
22/11/11 20:34:39.46 c39reFRG.net
劣等感婆参上

890:132人目の素数さん
22/11/11 22:46:04.27 ywXBgazh.net
Hadamard's gamma function

891:132人目の素数さん
22/11/12 00:56:11.89 iKYodEi8.net
微分がdfの意味ならf'は使わない

892:132人目の素数さん
22/11/12 08:50:17.08 ehr11irC.net
>>848
1変数xについての関数ならば
記入しなくてもその微分操作は 「xについて微分すること」 と
文脈で解る。いっぽう、多変数だと…どれについてかが分からんだろ。

ドラクエで敵が1種類か2種類以上かの違いだ。
・1種類なら 「こうげき」 を選んで君のコマンドはそれで終わりだ。
・2種類以上なら、 「こうげき」 を選んで
次に 「スライムかオオアリクイか」を選ぶ。
もしも、後者で 「こうげき」 で手を止めたらコマンド入力のまま、先に進まねぇ。
なぜなら、コマンド、君の操作が意味を為していないから。

893:132人目の素数さん
22/11/12 08:51:43.79 zSON5trv.net
>>855
歴史の本で見たことがある

894:132人目の素数さん
22/11/12 09:02:05.58 HArWnKKe.net
日本語の微分積分の本を何冊か見てみました。
例えば、
e^x = 1 + x + (1/2)*x^2 + … + (1/n!)*x^n + o(x^n)
と書いてある本ばかりです。
ですが、以下も成り立ちます。
e^x = 1 + x + (1/2)*x^2 + … + (1/n!)*x^n + O(x^{n+1})
f = O(x^{n+1}) ⇒ f = o(x^n)
が成り立つので、
e^x = 1 + x + (1/2)*x^2 + … + (1/n!)*x^n + O(x^{n+1})
のほうが情報量が多いです。
これはなぜなのでしょうか?

895:132人目の素数さん
22/11/12 10:21:47.55 c2EVxIbL.net
著者の趣味

896:132人目の素数さん
22/11/12 10:35:30.27 LtgoxlaZ.net
e^x = 1 + x + (1/2)*x^2 + … + (1/n!)*x^n + (1/(n+1)!)*x^(n+1) + o(x^{n+1})
のほうが情報量が多いです。

897:132人目の素数さん
22/11/12 11:03:24.44 c2EVxIbL.net
そんな事誰でもわかるという事実がいつまでもいつまでも理解できない無能

898:132人目の素数さん
22/11/12 11:07:42.79 ehr11irC.net
>>857
高校生レベルの丁寧な解説なのに
誰も褒め称えてくれない…
承認欲求が満たされない…鬱だ死のう…( '‘ω‘)

899:132人目の素数さん
22/11/12 11:43:22.81 kXEoQ1Dr.net
>>863
fが写像ならdfは一変数でも多変数でも使うのに
fが関数の時にはf'はなぜ一変数の時しか使わないのか
ここまで踏み込んで説明しなかったからかもしれない

900:132人目の素数さん
22/11/12 11:46:23.28 fjCpmB1X.net
>>857
もう死んだかな?
偏微分じゃないからどの変数とかいう概念がないんだけど

901:132人目の素数さん
22/11/12 11:54:36.34 0it9VBFW.net
1変数の時は’とかd/dx
偏微分の時は∂/∂xi
全微分の時はdf
普通の関数の時こうなってるんですからフレシェ微分という全微分に対応するものには’は使わないのです

902:132人目の素数さん
22/11/12 12:16:38.3


903:7 ID:owcmt/n0.net



904:132人目の素数さん
22/11/12 13:13:40.29 47O69Kl1.net
1変数とn変数で同じ記号使っちゃだめなの?

905:132人目の素数さん
22/11/12 13:20:56.18 0it9VBFW.net
f(x,y)があって、y=g(x)としたときに
df/dx=∂f/∂x+∂f/∂y*dy/dx
と書けるわけですけど、df/dxと∂f/∂x区別しないと訳わからないことになりますよね

906:132人目の素数さん
22/11/12 13:23:59.81 oal+64Ya.net
>>869
そういう質問じゃあないと思うよ

907:132人目の素数さん
22/11/12 13:47:30.09 0it9VBFW.net
わからないんですね

908:132人目の素数さん
22/11/12 14:20:45.92 psppLueC.net
>>869
>>df/dxと∂f/∂x区別しないと訳わからないことになりますよね
もしかしてこれを否定されたと思った?
このこと自体は正しい。

909:132人目の素数さん
22/11/12 14:27:02.25 0it9VBFW.net
わからないんですね

910:132人目の素数さん
22/11/12 14:33:39.84 OsiIECCH.net
>>869
本筋とあんま関係ないけどこの書き方って分かりにくいよな
左辺のfが正確には一変数関数f(x,g(x))を表してるのに対して右辺の∂f/∂xや∂f/∂yのfは二変数関数を表してるから両辺でfの意味が違う

911:132人目の素数さん
22/11/12 14:38:19.20 HArWnKKe.net
>>861
e^x は例として出しただけです。
f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + (f^{(n+1)}(0)/(n+1)!)*x^{n+1} + o(x^{n+1})
は成り立たないが、
f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + + O(x^{n+1})
は成り立つという場合にも、教科書の形式に従うと、
f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + + o(x^{n+1})
などと書いてしまう人が出てきます。

912:132人目の素数さん
22/11/12 14:39:21.38 HArWnKKe.net
訂正します:
>>861
e^x は例として出しただけです。
f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + (f^{(n+1)}(0)/(n+1)!)*x^{n+1} + o(x^{n+1})
は成り立たないが、
f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + + O(x^{n+1})
は成り立つという場合にも、教科書の形式に従うと、
f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + + o(x^{n})
などと書いてしまう人が出てきます。

913:132人目の素数さん
22/11/12 14:45:37.88 Z55pADda.net
そう書いてしまう人が出てくるかはわからないけど、そう間違ってしまう人がいたらその人の考えが足りなかったというだけでは。
教科書の進行上不都合が出てこないなら甘い評価で進めても問題なかろう

914:132人目の素数さん
22/11/12 15:26:52.30 iKYodEi8.net
>>874
分かりにくいって?
分かりやすくするためにこう書いているんだけど

915:874
22/11/12 15:39:03.66 f050CcFt.net
>>878
一つの式の中で同じ記号を別の意味で使ってなんで分かりやすくなるんだ

916:132人目の素数さん
22/11/12 15:51:19.81 ehr11irC.net
たまに高校生や大学1年のキッズで見かける。
y=f(x)=x^2 (について導関数を求めると…)
dy/dx = 2x (を得る。そして)
dy = 3x * dx
みたいに3行目で意味不明な操作をする人が
いるけどああいう感じの人なんだろうな。
dy/dx を分数だと思ってやがる。
(記号の見た目が似てるだけであって、分数ではない)

917:132人目の素数さん
22/11/12 15:52:53.77 ehr11irC.net
訂正 3行目    
dy = 2x * dx
dyがあっちに行って、dxがこっちに行って…
とかいう意味不明な操作。

918:132人目の素数さん
22/11/12 16:12:10.79 ag9KozdJ.net
微分形式表現だと思えば別に間違ってもないですけど

919:132人目の素数さん
22/11/12 16:13:16.83 iKYodEi8.net
>>879
同じモノだからさ
fという値
それがx,yに関連している2変数関数だから
∂f/∂xという記法
y=g(x)という関係も含めたらxの1変数関数だから
df/dxという記法
何を意味しているのか明瞭だから区別して書いている

920:132人目の素数さん
22/11/12 16:18:51.58 iKYodEi8.net
大体
df/dx=∂f/∂x+∂f/∂y・dy/dx
の∂f/∂xも∂f/∂yもy=g(x)が代入されているxの1変数関数
だからこそ左辺の1変数関数(の微分である1変数関数)と
1変数関数として一致している
モチロンこれを
df(x,g(x))/dx=∂f/∂x(x,g(x))+∂f/∂y(x,g(x))・dg(x)/dx
と書くことを妨げるモノではない

921:874
22/11/12 16:31:32.48 I3jirpBg.net
うーん、まあいいや
俺は>>884の最後の式みたいに書いてあった方が分かる

922:132人目の素数さん
22/11/12 16:49:51.60 ehr11irC.net
>>882
正気か、おまえ。

923:132人目の素数さん
22/11/12 17:00:40.14 D+G+7nHj.net
わからないんですね

924:132人目の素数さん
22/11/12 17:41:14.35 VjRS2YpT.net
>>875
余計な仮定なしの極普通の条件「n回まで微分可そしてそれが連続」から言えるのは
f(x) = f(0) + .. + (1/n!).f⁽ⁿ⁾(0).xⁿ + o(xⁿ)
教科書は一般論を述べたいはずなのでこれでいいんです.
解析関数のように O(x^{n+1}) と書ける場合を含んでいるし
その必要があれば O で書くでしょう. これで混乱する人はもっと他の所で躓くはず
fのn階導関数が連続ならば
f(x) = f(0) + ∫[0,x] f⁽¹⁾(ξ₁) dξ₁
= f(0) + ∫ [0,x] { f¹(0) + ∫ [0,ξ₁]f⁽²⁾(ξ₂)dξ₂ } dξ₁
= f(0) + f¹(0).x + ∫ [0,x] dξ₁ ∫ [0,ξ₁] dξ₂ f⁽²⁾(ξ₂)
= f(0) + f¹(0).x + ∫∫ [0,x]² dξ² χ(0≦ξ₂≦ξ₁≦x) f⁽²⁾(ξ₂)
= f(0) + .. + ∫..∫ [0,x]ⁿdξⁿ χ(0≦ξₙ≦..≦ξ₂≦ξ₁≦x).f⁽ⁿ⁾(ξₙ)
= f(0) + .. + ∫ [0,x] dξₙ (1/(n-1)!) ∫..∫ [ξₙ,x]ⁿ⁻¹dξⁿ⁻¹ f⁽ⁿ⁾(ξₙ)
= f(0) + .. + (1/(n-1)!).∫ [0,x]dξ (x-ξ)ⁿ⁻¹{ f⁽ⁿ⁾(0) + q(ξ) } .... ( q(ξ) := f⁽ⁿ⁾(ξ) - f⁽ⁿ⁾(0) )
= f(0) + .. + (1/n!).f⁽ⁿ⁾(0).xⁿ + (1/(n-1)!).∫ [0,x]dξ (x-ξ)ⁿ⁻¹q(ξ)
|∫[0,x]dξ (x-ξ)ⁿ⁻¹q(ξ)| ≦ (xⁿ/n!).sup{0≦ξ≦x}(|q(ξ)|) = o(xⁿ)
∵ lim{x→0} sup{0≦ξ≦x}(|q(ξ)|) = 0 {f⁽ⁿ⁾(ξ)の連続性}
よって f(x) = f(0) + .. + (1/n!).fⁿ(0).xⁿ + o(xⁿ)
> f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + (f^{(n+1)}(0)/(n+1)!)*x^{n+1} + o(x^{n+1})
> は成り立たないが,
これは、あまり考えたく無い条件「f^{(n+1)}(ξ)は連続ではない」が必要になります
そういうのは必要が生じたら考えればいいだけであって記法の心配とは無縁の話でしょう

925:888
22/11/12 19:37:10.05 VjRS2YpT.net
訂正: 「n回まで微分可」だけでよい.
「そしてそれが連続」である必要はない.
f(x) = f(0) + .. + ∫ [0,x] dξₙ₋₁ (1/(n-2)!) ∫..∫ [ξₙ₋₁,x]ⁿ⁻²dξⁿ⁻² f⁽ⁿ⁻¹⁾(ξₙ₋₁)
= f(0) + .. + ∫ [0,x] dξₙ₋₁ (1/(n-2)!) (x-ξₙ₋₁)ⁿ⁻² f⁽ⁿ⁻¹⁾(ξₙ₋₁)
= f(0) + .. + ∫ [0,x] dξₙ₋₁ (1/(n-2)!) (x-ξₙ₋₁)ⁿ⁻² { f⁽ⁿ⁻¹⁾(0)+ f⁽ⁿ⁾(0)ξₙ₋₁ + o(ξₙ₋₁) } .... (∵ 微分の定義)
= f(0) + .. + (1/(n-1)!). f⁽ⁿ⁻¹⁾(0).xⁿ⁻¹ + (B(n-1, 2)/(n-2)!).f⁽ⁿ⁾(0).xⁿ + Rₙ(x) .... (B(a,b)はベータ関数)
= f(0) + .. + (1/(n-1)!). f⁽ⁿ⁻¹⁾(0).xⁿ⁻¹ + (1/n!).f⁽ⁿ⁾(0).xⁿ + Rₙ(x)
Rₙ(x) := (1/(n-2)!) .∫ [0,x] dξ (x-ξ)ⁿ⁻².o(ξ)
|Rₙ(x)| ≦ (1/(n-2)!) |∫ [0,x] dξ (x-ξ)ⁿ⁻².ξ. o(ξ)/ξ | ≦ (1/n!). |x|ⁿ. sup(|o(ξ)/ξ|)
lim[x→0] sup(|o(ξ)/ξ|) = 0 ∴ Rₙ(x) = o(xⁿ)
よって f(x) = f(0) + .. +(1/(n-1)!). f⁽ⁿ⁻¹⁾(0).xⁿ⁻¹ + (1/n!).f⁽ⁿ⁾(0).xⁿ + o(xⁿ)
> f(x) = f(0) + f'(0)*x + (f''(0)/2)*x^2 + … + (f^{(n)}(0)/n!)*x^n + (f^{(n+1)}(0)/(n+1)!)*x^{n+1} + o(x^{n+1})
> は成り立たないが
そんなのは存在しない

926:132人目の素数さん
22/11/12 19:57:40.35 VjRS2YpT.net
(追記) >>888, >>889 の証明は x ≧ 0 についてのもの
x<0 については
g(t) := f(-t) と置いて
t≧0 についての証明: g(t) = g(0) + .. + (1/n!).g⁽ⁿ⁾(0).tⁿ + o(tⁿ) より
f(-t) = f(0) + .. + (1/n!).(-1)ⁿ.f⁽ⁿ⁾(0).tⁿ + o(tⁿ) .... ∵ g⁽ⁿ⁾(t) = (-1)ⁿ. f⁽ⁿ⁾(-t)
x=-t で置き換えれば
x≦0 についての f(x) = f(0) + .. + (1/n!).f⁽ⁿ⁾(0).xⁿ + o(xⁿ) を得る.

927:132人目の素数さん
22/11/12 20:46:07.40 PWYQ/msE.net
>>889
『余計な仮定』ということについて疑問がありますけど, テイラーの公式:
f(a+h) = f(a) + Df(a)(h) + ・・・(1/n!) D^n f(a)(h^n) + o(|h|^n)
は, f が a の近傍で n-1 回微分可能で, D^{n-1}f が
点 a でのみ微分可能であっても成り立つのではないですか?

928:132人目の素数さん
22/11/12 21:16:30.78 2eB0J2sg.net
ソリャそうだ

929:132人目の素数さん
22/11/12 21:45:48.86 rB7flw++.net
沙羅双樹

930:132人目の素数さん
22/11/12 23:56:09.15 noIkKf8g.net
dfとDfならdfが主流?

931:132人目の素数さん
22/11/13 00:01:54.43 8JuPYBWp.net
接空間の間に誘導される抽象的な写像の意味での微分についてはdfの方が一般的な気がする

932:132人目の素数さん
22/11/18 15:34:51.84 Ek2LZ9cy.net
G/Φ(G)が巡回群ならGは巡回群である。
Φ(G):フラッチニ部分群
よろしくお願いします。

933:132人目の素数さん
22/11/18 19:43:47.70 3nUcDPGY.net
lim sup_{D∋z → 1} |f(z)|の定義は何


934:ですか?



935:132人目の素数さん
22/11/18 19:51:10.99 h1p4weZH.net
あった
URLリンク(groupprops.subwiki.org)

936:132人目の素数さん
22/11/18 19:56:21.44 JuebbEhF.net
>>896
x∈G-Φ(G)とするとxとΦ(G)でGを生成するけどΦ(G)は生成系から取り除けるのでxで生成されるってんじゃないの?

937:132人目の素数さん
22/11/18 21:47:38.79 me8PpwxB.net
>>896
G/Φ(G) の生成元の代表元の一つをgとしてgで生成される部分群Hを考える。
G=Hでないとすると、Hを含むGの極大部分群はΦ(G)とgを共に含むことからGと一致することになって矛盾。

938:132人目の素数さん
22/11/18 21:54:33.78 FydCEdUH.net
補題 x∈φ(G),S⊂G,<{x}∪S> → <S> = G
(∵) <S>≠Gなら極大部分群Mを<S>⊂Mとなるようにとれる
x∈Mだから<{x}∪S>⊂M □
系 φ(G)が有限生成、S⊂G、<{sφ(G) | s∈S}> = G/φ(G) → <S>=G
(∵) 補題を用いてφ(G)の生成元の個数についての帰納法□
系 φ(G)が有限生成、G/φ(G)が巡回群→Gが巡回群

939:132人目の素数さん
22/11/19 07:19:49.93 4Ksz2N/Y.net
>>899-901
どうもありがとうございました。
ちょっと私の頭がボケていました。

940:132人目の素数さん
22/11/19 10:18:48.95 E9ryBNT0.net
関数の上極限が教科書に書いてないのはなぜですか?

941:132人目の素数さん
22/11/19 10:31:14.47 +73shWYA.net
その教科書のレベルが低いからです

942:132人目の素数さん
22/11/19 11:29:33.01 E9ryBNT0.net
関数の上極限が書いてある本の例をあげてください。

943:132人目の素数さん
22/11/19 14:06:14.27 jsOadLPr.net
解析概論とかなら載ってるんじゃない?知らんけど。
載ってない微積の教科書探す方が難しい気がするが。

944:132人目の素数さん
22/11/19 14:24:55.19 E9ryBNT0.net
解析概論、杉浦、小平
書いていませんね。

945:132人目の素数さん
22/11/19 14:39:46.31 jsOadLPr.net
実数列の上極限と実関数の極限は定義されているけど、って意味だったりする?

946:132人目の素数さん
22/11/19 14:45:16.12 E9ryBNT0.net
「実数列の上極限と実関数の極限」の定義はもちろん書いてあります。

947:132人目の素数さん
22/11/19 14:51:18.34 E9ryBNT0.net
野村隆昭著『複素関数論講義』
奇妙なことですが、複素関数が連続であることの定義は書いてあるのですが、複素関数の極限の定義が書いてありません。
そして、いきなり複素関数の微分の定義が書いてあります。
著者が亡くなってしまっているので、連絡できないのが残念です。

948:132人目の素数さん
22/11/19 15:05:34.53 jsOadLPr.net
>>909
じゃあいいじゃん
その二つの定義わかっていれば実関数の上極限くらい定義できるでしょ
それで二通り以上の定義の仕方が思いついたがどちらを採用すべきか、とかならそのように具体的に質問すべき

949:132人目の素数さん
22/11/19 15:39:47.13 E9ryBNT0.net
>>911
それでは、数列の極限が定義されていれば、関数の極限の定義は自分で定義できるから不要ということでしょうか?

950:132人目の素数さん
22/11/19 16:26:36.84 gYjtdFdQ.net
当然そうはならない

951:132人目の素数さん
22/11/19 16:29:00.47 Z2rwBay6.net
>>907
書いてある。

952:132人目の素数さん
22/11/19 16:33:00.76 gYjtdFdQ.net
>>907
書いてあるそうだ

953:132人目の素数さん
22/11/19 17:00:50.63 kRCAsDBm.net
書いてあるなしはどうでも良くね?
必要あるなら書くし
無ければ書かないかあるいは書くてだけ

954:132人目の素数さん
22/11/19 18:05:46.34 gYjtdFdQ.net
どうでもよくないのは
ウソをついているかどうか

955:132人目の素数さん
22/11/19 20:52:43.03 upZ/9WVw.net
>>910
>複素関数の極限の定義
本を持っていないからなんとも言えないけど、複素関数列の極限の意味ですか?
>>912
関数の列や、もっと一般にフィル


956:ターづけられた関数族の極限は、 その関数が属する関数空間にどんな位相を入れるかで、扱い方が異なります。 単に数列の極限を知っているからといって、関数列の極限を自力て書けるかどうかというと、 初学者には厳しいのではないでしょうか。



957:132人目の素数さん
22/11/19 21:01:53.83 E9ryBNT0.net
>>918
「複素関数の極限の定義」についてですが、『複素関数論講義』には、
lim_{z→a} f(z) = A
の定義が書いてありません。
一方、
lim_{z→a} f(z) = f(a) の定義は書いてあります。
そこが奇妙だと思います。

958:132人目の素数さん
22/11/19 21:07:11.94 upZ/9WVw.net
>>919
本の不備を論うことそのものが目的でないならば、お答えします。
lim_{z→a} f(z) = A
の定義は、任意の正数 ε に対し, 正数 δ が存在し, |z-a| < δ なる任意の複素数 z に対し,
|f(z) - A| < ε となることです。
これは、正確には、関数の極限ではなく、関数『による』極限です。

959:132人目の素数さん
22/11/19 21:45:39.50 X0cNy/6h.net
>>920
>>|z-a| < δ なる任意の複素数 z に対し,
「0<|z-a| < δ なる任意の複素数 z に対し」にしないと
導関数の定義が書きにくいのでは?

960:132人目の素数さん
22/11/19 22:26:52.99 MpF5zjRB.net
>>912
数列の極限の定義から関数f(x)のx→aのとき極限の定義を想像しようとすると、ある収束列x_n→aを取って考えれば十分なのか全て考えなくてはならないのか、x_n=aとなるようなnがあって良いのか、といった点で(読者によっては)疑問が生じる
今考えている問題に比べるときちんと定義を書いてしかるべき問題だと思う

961:132人目の素数さん
22/11/19 22:28:22.55 kRCAsDBm.net
>>921
分母になるから?
0のときは除外で

962:132人目の素数さん
22/11/19 23:08:15.52 X0cNy/6h.net
こんなところに気を遣うのは嫌だけどね

963:132人目の素数さん
22/11/20 03:42:34.36 vwVhg6TJ.net
だいたいこんな重箱のすみつつくような話いつまでもいつまでもいつまでもがぎゃあぎゃあ言ってんのがバカの証拠だよ
ちょっと考えたらわかるやん
そんなもんに統一的な定義なんてできるはずない
そんな者取り仕切ってる世界的機関があるわけもなく、みんな何となく長い年月かけて少しずつ右に倣えで標準っぽいものができてくるだけで、もちろん人の好みで多少のズレが出て当たり前、だからみんなその場その場でこの人はどんな意味で使ってるんだろうと確認しながら読む、そしてそれができる力を身につける
そんな事2、3年数学勉強すればわかるやろに
本当にスーパーバカ

964:132人目の素数さん
22/11/20 07:01:54.37 O3/gkxDr.net
重箱の隅が一番居心地が良い人もいる

965:132人目の素数さん
22/11/20 07:21:33.16 YpHm4yCq.net
g は a で微分可能、 f は g(a) で微分可能とする。
ε を任意の正の実数とするとき、 0 < |h| < ε かつ g(a + h) - g(a) = 0 となるような h が存在するとする。
このとき、 f(g(x)) は a で微分可能で、微分係数は 0 であることを証明せよ。

966:132人目の素数さん
22/11/20 09:10:02.62 O3/gkxDr.net
g は a で微分可能、 f は g(a) で微分可能
ー->
(f(g(x)))'(a)=f'(g(a))g'(a).
ε を任意の正の実数とするとき、 0 < |h| < ε かつ g(a + h) - g(a) = 0 となるような h が存在する
--->
g'(a)=0.
ゆえに
(f(g(x)))'(a)=f'(g(a))g'(a)=f'(g(a))・0=0.

967:132人目の素数さん
22/11/20 09:23:49.05 QBAd8Nia.net
>>927
h(t)=(f(t)-f(g(a)))/(t-g(a)) (t<>g(a)), f'(g(a)) (t=g(a))
∀xh(g(x))(g(x)-g(a))+f(g(a))=f(g(x))
lim(f(g(x))-f(g(a)))/(x-a)=limh(g(x))(g(x)-g(a))/(x-a)=f'(g(a))g'(a)
g'(a)=lim(g(x)-g(a))/(x-a)=0

968:132人目の素数さん
22/11/20 09:55:50.16 YpHm4yCq.net
lim_{h→0} [g(a+h)-g(a)]/h = 0 でなければならない。
φ(h) := [f(g(a+h))-f(g(a))]/[g(a+h)-g(a)] if g(a+h)-g(a) ≠ 0
φ(h) := f'(g(a)) if g(a+h)-g(a) = 0
と定義すると、 φ は h = 0 で連続である。
∴ [f(g(a+h))-f(g(a))]/h = φ(h) * [g(a+h)-g(a)]/h → f'(g(a)) * 0 = 0

969:132人目の素数さん
22/11/20 09:57:16.16 YpHm4yCq.net
φ(h) := [f(g(a+h))-f(g(a))]/[g(a+h)-g(a)] if g(a+h)-g(a) ≠ 0
φ(h) := f'(g(a)) if g(a+h)-g(a) = 0
↑このトリッ�


970:Nを使わずに証明できないですかね? 多分、無理だと思いますが。 もし可能だとすると、妙なトリックを使わずに、合成関数の微分の定理が証明できますよね。



971:132人目の素数さん
22/11/20 10:05:22.36 O3/gkxDr.net
>>931
模範解答をありがとう

972:132人目の素数さん
22/11/20 10:13:57.43 jM+uPS88.net
>>926
梅田亨のことか

973:132人目の素数さん
22/11/20 10:30:41.69 O3/gkxDr.net
腹いっぱいになった後の暇つぶしだろう

974:132人目の素数さん
22/11/20 10:54:38.92 Sfr1QN7O.net
>>921
> 0<|z-a| < δ なる任意の複素数 z に対し」にしないと
> 導関数の定義が書きにくいのでは?
この場合は、
lim_{z→a, z ≠ a} f(z) = A
と書くのが普通ではないでしょうか。

975:132人目の素数さん
22/11/20 12:12:50.00 DUk7sGXS.net
>>935
文献にどれだけ当たればそれが断言できるのかわからない

976:132人目の素数さん
22/11/20 14:51:49.19 YpHm4yCq.net
g は a で微分可能、 f は g(a) で微分可能とする。
このとき、 f(g(x)) は a で微分可能で、微分係数は f'(g(a)) * g'(a) であることを証明せよ。
(1) ε を任意の正の実数とするとき、 0 < |h| < ε かつ g(a + h) - g(a) = 0 となるような h が存在する場合。
このとき、 f(g(x)) は a で微分可能で、微分係数は 0 = g'(a) = f'(g(a)) * g'(a) であるから、成り立つ。
(2) 0 < |h| < ε ⇒ g(a + h) - g(a) ≠ 0 を成り立たせるような正の実数 ε が存在する場合。
[f(g(a+h))-f(g(a))]/h = [f(g(a+h))-f(g(a))]/[g(a+h)-g(a)] * [g(a+h)-g(a)]/h → f'(g(a)) * g'(a) (h → 0)
>>931
のトリックを使わずに証明できれば満足なのですが。

977:132人目の素数さん
22/11/20 16:01:33.26 3xfPLt82.net
>>937
928では落第?

978:132人目の素数さん
22/11/20 16:07:53.73 YpHm4yCq.net
>>938
あっていると思いますが、合成関数の微分の公式は使わないで証明してほしかったです。

979:132人目の素数さん
22/11/20 16:13:26.62 3xfPLt82.net
合成関数の微分は微積分で最も重要な公式と
溝畑先生の教科書に書いてある

980:132人目の素数さん
22/11/20 17:20:15.94 QBAd8Nia.net
>>938
微分可能性を示すのだから
合成関数の微分法はその結論だよ

981:132人目の素数さん
22/11/20 17:24:51.40 4dXUOTOD.net
p:E→Bをfibrationとして底空間BがAへと変位レトラクトである時
全空間でもEがp^-1(A)へと変位レトラクトである事はどのように証明すればよいのでしょうか
(変位レトラクトの定義は強でない方、つまりホモトピーはA×I上で固定されていなくてよい方の定義を考えています)
単純にE×I→B×I→B(左のmapはは射影、右は変位レトラクトを与えるホモトピー)にhomotopy lifting propertyを使おうとしても
t=1でp^-1(A)上で恒等写像になる事が示せずに困っています

982:132人目の素数さん
22/11/20 17:28:47.44 gdRLw20T.net
>>941
だから落第だね

983:132人目の素数さん
22/11/20 17:32:24.11 Sfr1QN7O.net
>>942
下記の pdf :
URLリンク(www.researchgate.net)
で、定理 4.10.1 を参照してください。
DR pair というのが、変位レトラクトの意味です。
元ネタは、A.Strom の論文、Note on Cofibrations II です。

984:132人目の素数さん
22/11/20 17:55:00.68 Sfr1QN7O.net
>>942
訂正. 上記 pdf では、(B, A) は closed cofibration と仮定しています。
(B, A) が closed cofibration でなくて、なおかつ A が B の変位レトラクトの場合については,
私にはまだわかりません.

985:132人目の素数さん
22/11/20 18:39:27.00 QBAd8Nia.net
>>937
トリックていうか
(f(g(x))-f(g(a)))/(x-a)=(f(g(x))-f(g(a)))/(g(x)-g(a))・(g(x)-g(a))/(x-a)
の素朴さを保ちつつ
lim(f(g(x))-f(g(a)))/(g(x)-g(a))
の部分を考えるには
h(t)=(f(t)-f(g(a)))/(t-g(a)) (t<>g(a))
と置いて
limh(g(x))
が必要でそれにはh(t)をt=g(a)の場合にも連続に拡張すればよいのだから自然では?

986:132人目の素数さん
22/11/20 18:41:20.87 4dXUOTOD.net
>>944
ありがとうございます
cofibrationの用語にあまり馴染みがなくてちゃんとは読めてませんが
このpdfでDR-pairと呼んでいるものは自分が言っているところの強変位レトラクトの事のように見えます
自分が今考えているのは(弱)変位レトラクトの方でこれはwikiの
URLリンク(ja.wikipedia.org)
にあるような定義を採用しています(ホモトピーがA×I上でidentityになる事を要請しない)
URLリンク(mathoverflow.net)
のサイトに関連した事が書いてあるのですが
強変位レトラクトについてはおっしゃる通りclosed cofibrationの仮定が必要になるようですが
強でない変位レトラクトの場合はその仮定なしで「明らか」だとHatcherは書いています
この「明らか」と言っている部分がよくわからないのでその部分を教えてほしいです

987:132人目の素数さん
22/11/20 18:50:35.29 YpHm4yCq.net
>>946
ありがとうございます。何を自然と考えるかですね。
シュプリンガーのセールで以下の本が安いので、買おうかどうか考えています。
Mathematical Logic (Graduate Texts in Mathematics, 291) 3rd ed. 2021 Edition
by Heinz-Dieter Ebbinghaus (Author), Jörg Flum (Author), Wolfgang Thomas (Author)
これっていい本ですか?

988:132人目の素数さん
22/11/20 18:56:48.69 Sfr1QN7O.net
>>947
リンクありがとうございます。Allen Hatcher 先生の明らかだ、という主張は、私にもわかりません。
I × E から E への写像 G で, G(1, x) ∈ E|A なるものはすぐに見つかりますが、
G(1, a) = a が任意の a ∈ A に対して成り立つかどうかが問題ですね。

989:132人目の素数さん
22/11/20 18:57:34.70 Sfr1QN7O.net
訂正
任意の a ∈ E|A に対して成り立つかどうか

990:132人目の素数さん
22/11/20 19:02:23.66 QBAd8Nia.net
k(x)=(f(g(x))-f(g(a)))/(g(x)-g(a)) (g(x)<>g(a)), f'(g(a)) (g(x)=g(a))
を考えるのは技巧的
x=aの周りで常にg(x)=g(a)である場合
k(x)=(f(g(x))-f(g(a)))/(g(x)-g(a)) (g(x)<>g(a))
にはlimk(x)が存在しないため
定義域の境界における値を延長することになるから

991:132人目の素数さん
22/11/20 19:11:11.38 QBAd8Nia.net
>>949
Aから段々延ばしてBに広げられるのだから
HEPによってAの各点のファイバーをグニューッとズラしていく感じ?

992:132人目の素数さん
22/11/20 19:30:31.59 Sfr1QN7O.net
>>952
いいえ、今話題になっているケースは、(B, A) が cofibration でない場合です。
使える条件は、
[1] p : E → B は fibration
[2] A は B の弱変位レトラクト
のみです。

993:132人目の素数さん
22/11/20 19:31:03.92 4dXUOTOD.net
>>949
やはりそれほどすぐには言えないですよね
もう少し考えてみます

994:132人目の素数さん
22/11/20 19:42:01.24 QBAd8Nia.net
>>953
スマン逆
HLPで

995:132人目の素数さん
22/11/20 19:53:27.13 Sfr1QN7O.net
>>955
H : I × B → B で任意の x ∈ B と a ∈ A に対して
H(0, x) = x, H(1, x) ∈ A, かつ H(1, a) = a
なるものに対して, HLP によって, G_0 = id_E なる
H の lifting G : I × E → E の存在はすぐ言えるんです。
この G が 任意の x' ∈ E|A に対して G(1, x') = x' という
条件を満たすかどうかがわからない。
A のファイバーの各点をずらしていく、という感じだと、
任意の x' ∈ E|A に対して G(1, x') = x' という条件から出発して、
任意の x ∈ E に対して G(0, x) = x を満たす homotopy
G: I × E → E を構成しないといけないと思います。

996:132人目の素数さん
22/11/21 00:26:29.47 c+vN0yiY.net
C^n の、ざりすき位相での非空開集合は、ユークリッド位相で稠密ですか。

997:132人目の素数さん
22/11/21 00:49:22.81 ZifoTbGb.net
はい

998:132人目の素数さん
22/11/21 05:22:31.47 XuWZLDN0.net
Cの無限部分集合は、ざりすき位相で稠密ですか。

999:132人目の素数さん
22/11/21 05:47:49.57 aGdDNWLt.net
はい

1000:132人目の素数さん
22/11/21 07:04:37.38 XuWZLDN0.net
CからC^2への正則な埋め込みは
代数的な埋め込みと解析的に共役ですか。

1001:132人目の素数さん
22/11/21 08:42:23.11 A1jMls5d.net
野村隆昭著『複素関数論講義』



1002:べき級数の合成についてですが、2重級数についての定理を使う必要がありますが、 それについては触れずに、直感的に展開してしまっています。



1003:132人目の素数さん
22/11/21 10:56:23.04 XQg9SDPb.net
>>962
その本は駄本だから読むのを止めることを勧める。ここで指摘して出版社がそれを見て駄本を絶版にすること(正義の味方笑)が目的なのか

1004:132人目の素数さん
22/11/21 10:58:35.37 XQg9SDPb.net
>>962
それにしてもお前はその著者の本に対して異常なほど長期にわたって粘着しているよな

1005:132人目の素数さん
22/11/21 11:20:02.15 6t/nf617.net
CからC^2への代数的な埋め込みは
線形な埋め込みと代数的に共役ですか。

1006:132人目の素数さん
22/11/21 16:43:23.91 A1jMls5d.net
f(z) = a_1*z + a_2*z^2 + …
g(w) = b_0 + b_1*w + b_2*w^2 + …
とする。著者は、 g(f(z)) が z = 0 を中心とするべき級数に展開されることを示しています。
その後、次の文があらわれます:
「命題4.20より、 g(f(z)) は z = 0 の近傍で正則であり、したがって、解析的である。」
命題4.20というのは、合成関数の微分についての定理です。
この文に対して、以下の注釈が書いてあります。
「べき級数論だけで証明できるが、本書では後述の定理8.21に拠ることとした。」
これがよく分かりません。
g(f(z)) は z = 0 を中心とするべき級数なので、 z = 0 を中心とする収束円の内部で
正則です。別に、合成関数の微分についての定理を持ち出さなくてもいいはずです。
さらに、 g(f(z)) は z = 0 の近傍で解析的であることも、それ以前に証明されている
べき級数が収束円の内部で解析的であるという定理4.34から明らかです。
後述の定理8.21に拠らなくても、既に証明されていることです。
これは一体どう考えたらいいでしょうか?

1007:132人目の素数さん
22/11/21 16:47:35.15 A1jMls5d.net
野村隆昭著『複素関数論講義』
f(z) = a_1*z + a_2*z^2 + …
g(w) = b_0 + b_1*w + b_2*w^2 + …
とする。著者は、 g(f(z)) が z = 0 を中心とするべき級数に展開されることを示しています。
その後、次の文があらわれます:
「命題4.20より、 g(f(z)) は z = 0 の近傍で正則であり、したがって、解析的である。」
命題4.20というのは、合成関数の微分についての定理です。
この文に対して、以下の注釈が書いてあります。(g(f(z))が解析的であることの証明についての注釈です。)
「べき級数論だけで証明できるが、本書では後述の定理8.21に拠ることとした。」
これがよく分かりません。
g(f(z)) は z = 0 を中心とするべき級数なので、 z = 0 を中心とする収束円の内部で
正則です。別に、合成関数の微分についての定理を持ち出さなくてもいいはずです。
さらに、 g(f(z)) は z = 0 の近傍で解析的であることも、それ以前に証明されている
べき級数が収束円の内部で解析的であるという定理4.34から明らかです。
後述の定理8.21に拠らなくても、既に証明されていることです。
これは一体どう考えたらいいでしょうか?

1008:132人目の素数さん
22/11/21 17:02:35.03 XQg9SDPb.net
その本は全く駄目な本だから攻撃ネタは山ほどあるが、著者はもう死んでいるのでそれ以上やめてくれ。著者の無能が暴かれて可哀想すぎる。

1009:132人目の素数さん
22/11/21 17:04:44.12 A1jMls5d.net
>>968
いい本であると思いますが、細かいところで、疑問点が出てくるところがあります。

1010:132人目の素数さん
22/11/21 17:10:07.52 XQg9SDPb.net
褒め殺しまでして攻撃の手を緩めないということか。恐ろしい奴ににらまれたな。無能な著者の自業自得と諦めるしかないのか。死んでまでこんな仕打ちを受けるとは。

1011:132人目の素数さん
22/11/21 17:17:09.26 XQg9SDPb.net
絶版にさせることが目的のようだな。あまりに粘着質な読者によって無能な著者がその駄本を葬られる。しつこすぎる攻撃が恐ろしい。

1012:132人目の素数さん
22/11/21 17:19:13.48 A1jMls5d.net
>>971
『複素関数論講義』を読んだことはあるのでしょうか?

1013:132人目の素数さん
22/11/21 17:21:07.96 XQg9SDPb.net
しかもこいつの指摘の「7~8割」は誤りまたはどうでもよい指摘なのだ。こんな奴のしつこすぎる攻撃で鞭打たれるとは無能な著者とはいえ可哀想すぎる。
俺は今すぐ攻撃をやめることを希望する。

1014:132人目の素数さん
22/11/21 17:21:57.53 XQg9SDPb.net
>>972
俺はその無能な著者の関係者なんだよ。

1015:132人目の素数さん
22/11/21 17:26:18.19 XQg9SDPb.net
>>972
疑問形式や伝聞形式でも内容により名誉毀損になるので、お前の「誤った指摘」に関しては貯めておいて開示請求の資料にさせてもらうよ。あまりにつらすぎる。

1016:132人目の素数さん
22/11/21 17:31:00.79 A1jMls5d.net
f(z) = a_1*z + a_2*z^2 + …
g(w) = b_0 + b_1*w + b_2*w^2 + …
とする。
|z| が十分小さいときの f(z) は、 g(w) の収束円の内部に入ので、合成関数 g(f(z))
を考えることができます。
g(f(z)) は z = 0 を中心とするべき級数 c_n*z^n であらわされます。
このとき、 g(f(z)) の定義域と c_n*z^n の収束域は一致するのでしょうか?

1017:132人目の素数さん
22/11/21 17:55:46.35 cp7ihkAX.net
>>975
君の方がひどいこと書いてね?

1018:132人目の素数さん
22/11/21 20:14:44.88 XuWZLDN0.net
>>976
関数の定義域として原点中心の開�


1019:~板のみを考えるのであれば



1020:132人目の素数さん
22/11/21 20:30:38.85 NVftFyVp.net
>>974
誤りではなくどうでもよくない一番ダメな所ってどこですか?

1021:132人目の素数さん
22/11/21 20:42:45.79 XuWZLDN0.net
>>979
まあやめとけ

1022:132人目の素数さん
22/11/21 20:42:45.94 XuWZLDN0.net
>>979
まあやめとけ

1023:132人目の素数さん
22/11/22 12:15:51.02 aDS36Zer.net
次スレ
大学学部レベル質問スレ 20単位目
スレリンク(math板)

1024:132人目の素数さん
22/11/22 12:32:37.25 7dgkSszV.net
平行四辺形と平行六面体のn次元への一般化ってなんていうの?
2次元→平行四辺形
3次元→平行六面体
n次元→?
ウィキペディアによると「平行多面体」は違う意味で使われてるらしい(ゾーン多面体がなんたらかんたら)

1025:132人目の素数さん
22/11/22 12:51:44.28 73WiJEGg.net
n次元ユークリッド空間の図形で名前ついてる方が少ないかついててもすごいマイナーなやつしかないやろ
結局“本稿では××の図形を××と呼ぶ”みたいに一々全部断り書きつけるしかない
そんなマイナーな単語使って通用するのは便所の落書きくらい

1026:132人目の素数さん
22/11/22 14:27:39.06 mWFOCqFM.net
>>984
そうなんか、サンクス

1027:132人目の素数さん
22/11/22 16:19:49.73 SS5lOObG.net
線形回帰分析で
回帰直線への距離で最小二乗法して算出した回帰直線の決定係数の算出の仕方を教えてください。
主成分回帰やダミング回帰で調べてもなかなか辿り着きません 検索ワードだけでも教えていただければ幸いです。

1028:132人目の素数さん
22/11/22 22:32:16.64 ZYnWiMO4.net
>>983
行列式で一般面積一般体積出せる超平行単体のシークエンスの母関数ならぬ母空間でも考えとるんか?。

1029:132人目の素数さん
22/11/22 23:33:47.40 DAMbwnXZ.net
>>986
y=ax+bが(xi,yi)とのズレがaxi+b-yiなので2乗して(axi+b-yi)^2でf(a,b)=Σ(axi+b-yi)^2が最小になるようにa,bを決めればいいんでしょ?

1030:132人目の素数さん
22/11/22 23:39:58.00 lKi1s1Vx.net
>>988
それ回帰直線の出し方じゃないです?
かと言って決定係数わからないですけど

1031:132人目の素数さん
22/11/22 23:53:41.80 qlFg3LTl.net
どうゆうこっちゃ?
つまりΣ| axᵢ - yᵢ +b |²/(a²+b²)が最小になるa,b?

1032:132人目の素数さん
22/11/23 00:54:26.00 qwgFP4ly.net
>>990
の意味でいいなら
S = Σ | xᵢ cosθ + yᵢ sinθ + c |²
= nc² + 2c Σ (xᵢ cosθ + yᵢ sinθ)
    + Σ ( xᵢ cosθ + yᵢ sinθ )²
はc = -1/nΣ (xᵢ cosθ + yᵢ sinθ)のとき最小値
- ((Σ (xᵢ cosθ + yᵢ sinθ))²/n
+ Σ ( xᵢ cosθ + yᵢ sinθ )²
= ( -(Σxᵢ)²/n + Σxᵢ² ) cos²θ
+( -( Σxᵢ )( Σyᵢ )/n + Σxᵢyᵢ) )2sinθcosθ
 + ( -(Σyᵢ)²/n + Σyᵢ² ) sin²θ
なのでこれを最小にするθを求めればいいのではなかろか

1033:132人目の素数さん
22/11/23 00:56:18.40 62ydA4JG.net
>>989


1034:132人目の素数さん
22/11/23 00:58:07.58 62ydA4JG.net
>>990
距離^2なら分母は1+a^2では?

1035:132人目の素数さん
22/11/23 01:05:46.27 qwgFP4ly.net
まぁでも>>990のような意味にとるのはそもそも統計学的におかしいからな
いわゆる(xᵢ,yᵢ)という散布図の計量なんて特に意味はないからそこで測った距離の二乗和が最小とかそもそも意味ない感はある
例えばいわゆる“相関係数”とかが理論的に望ましいのは2つの


1036:統計量を定数倍とか定数出すとかの変換で不変で、言ってみれば2つの統計量を“測る単位”に普遍に値が決まるのが魅力的で横軸の統計量の“単位”を変えても答え同じというのがいい しかし“その直線までの距離の二乗の和が最小となる直線”とかその手の変換で不変ではないからな しかしΣ|axᵢ+b -yᵢ|²が最小となるa,bはある意味その手のスケール変換で不変に保たれるからこっちの方が優れてるんだけどな



1037:132人目の素数さん
22/11/23 01:07:49.97 qwgFP4ly.net
>>993
ax+by+cと(p,q)の距離は
| ap + bq + c |²/√(a²+b²)
法線ベクトルの長さ1にしてるので分母を考えなくていい

1038:132人目の素数さん
22/11/23 05:35:35.47 re4Vphli.net
決定係数がわからないんならそれで検索すればいいだろ。
>>995
それのbが-1だろ。

1039:132人目の素数さん
22/11/23 09:02:21.02 24O4/fxk.net
>>996
違うって
求めたいのは直線やろ?
その直線の方程式をy = ax + bとおくか、x cosθ+ysinθ+c =0とおくかは自由においていいやろ?
必要なら後でy = ax+bに直せばいいんやから

1040:132人目の素数さん
22/11/23 09:22:15.49 24O4/fxk.net
つまり普通はa,bを変数としてΣ(axᵢ-yᵢ)²を最小にするa,bを求めるけど(wikiでは“残差の平方和”と表現している)けど、そうじゃなくてΣ(axᵢ-yᵢ)²/(a²+1)を最小にするa,bを求めたいと言ってるんじゃないの、で前者ですらどうやればいいかわからないと言ってるのが>>989じゃないの?

1041:132人目の素数さん
22/11/23 09:29:30.77 re4Vphli.net
>>997
>つまりΣ| axᵢ - yᵢ +b |²/(a²+b²)が最小になるa,b?
>| ap + bq + c |²/√(a²+b²)
上は下のa,b,cにa,-1,bを入れたんだから分母は√(a²+(-1)²)。
あとまず決定係数で検索しろ。

1042:132人目の素数さん
22/11/23 09:36:53.81 24O4/fxk.net
ダメだ
コイツ理解できる知能ないわ

1043:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 110日 10時間 7分 26秒

1044:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch