22/10/09 13:00:20.90 4uHLlbmt.net
Farkasの補題:
与えられた m×n 行列 A と m 次元ベクトル b に対して、次の一方のみが常に成り立つ。
(1) A * x = b, x ≧ 0 である x ∈ R^n が存在する。
(2) A^{T} * y ≧ 0, b^{T} * y < 0 である y ∈ R^m が存在する。
このFarkasの補題を証明するために、以下の補題を証明しています。
↓の証明では、 n_1 ≧ 0 かつ n_2 > 0 の場合にしか証明していないと思います。
ところが、著者らは、この補題の n_2 = 0 の場合がFarkasの補題であるからFarkasの補題が
成り立つと書いています。
本当に以下の証明で n_2 = 0 の場合も含めて証明されていますか?
imgur.com/tjPUnhg.jpg