22/12/22 00:11:25.46 U2wpEVxC.net
1=雑談にガロア理論は無理です。
貴方向けの課題を前に用意しておきましたよ。
まずは自分がそれをやってみましょう。
>>843
>3次方程式のカルダノの解法で得られる3つの根から
>加減乗除で3乗根の部分を取り出せないことを
>泥臭い計算で確かめること。
1075:現代数学の彼岸
22/12/22 06:27:52.23 CT6RQiGn.net
>>983
おサルさんへの課題
「3次方程式のカルダノの解法で得られる3つの根から
加減乗除で3乗根の部分を取り出せないことを
泥臭い計算で確かめること。」
”取り出せないこと”の理解は、おサルさんには無理じゃないかな
ω(1の3乗根)を使えば、取り出せるし、
それはおサルさんでも計算すればわかるけど
ここでいう”加減乗除”で認められる数の中に、
ωを含まないからそれはできないってことだよね
「方程式の根は実数だけど、3乗根の部分は実数でない」
という点から理解するのが一番早いよな
なんかおサルさんもそこは”納得”したかのコメントが見受けられるけど
理解じゃなく、多勢に無勢でしぶしぶ”納得”だから、ついつい
「でも、ほんとうはできる筈」とか諦められずにいっちゃうのかな
もしそうなら・・・哀れだね 彼も数学を諦めて涅槃に行けるといいね
え?数学を理解して涅槃に行く道はないのかって?
残念だけど、それはないな
だっておサルさんは数学書の文章も読めないし書いてある式も計算できないじゃん
それじゃ書いてあることの理解なんて無理よ
1076:132人目の素数さん
22/12/22 10:15:59.15 o2STx9rz.net
なぜ、ガウスの子孫が数学者とか物理学者とか言語学者などにならずに、
靴屋さんになったりしたのだろうか?ガウスの職は天文台長だったわけだが、
昼は寝て夜に観測してたのかな?
1077:132人目の素数さん
22/12/22 10:40:05.58 7+KwwHep.net
>>985
才能って遺伝しないもんなのね
1078:132人目の素数さん
22/12/22 10:50:03.53 7+KwwHep.net
>>981
>x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
>の根の フーリエ級数か、フーリエ変換か、離散フーリエ変換か
>どれかで、何か実際の例をしめして下さい
え?君、上の方程式のラグランジュの分解式の値の計算できないの?
それでガロアゲームクリアとかいってんの?
呆れた 1面でゲームオーバーじゃん!
1079:現代数学の系譜 雑談
22/12/22 11:51:32.59 pIX7wrc1.net
>>982
>円分体の数のべき根表示を計算するなら、最も効率的
>(古典的によく研究されている)計算法はあります。
>教えませんがw
>これをフーリエ級数として解釈したところで
>計算上は何も変わりません。
ふっ、ぐだぐだと
言い訳をつらねるねぇ~!w
1080:下記のおっさんの 「これはオリジナルな論なので、反論があれば歓迎する」 は、”円分体の数のべき根表示を計算する”限定だったのかぁ~?!!www 記 >>805より再録 (引用開始) ラグランジュリゾルベントとは何か?というと >>564に書いたように、根のべき根表示 (1) ξ=a_0+a_1α+ … +a_{n-1}α^{n-1} において、「直交関係」を利用して 項別に値を取り出す計算式であり (1)をフーリエ級数展開の類似物と見たとき フーリエ積分に対応している。 これはオリジナルな論なので、反論があれば歓迎する。 (引用終り)
1081:132人目の素数さん
22/12/22 12:03:10.36 5XpbsjKj.net
>>988
>(これは)”円分体の数のべき根表示を計算する”限定だったのかぁ~?!!
巡回方程式限定ね
え?1はそんな基本的なこともわかってなかったの?
1082:132人目の素数さん
22/12/22 12:16:57.89 aC8lephT.net
>>985
よく誤解されているけど、決して能力や閃きが先にあって膨大な労力をする訳ではない
ガウスのような能力や閃きを得るには膨大な労力を要する
多分ガウスの場合もそうだろう
多分、ガウスの子孫は幼少期に膨大な努力が出来なくて現在のように靴屋になったのだろう
ま、ドイツでは靴屋もマイスター扱いじゃないか
1083:132人目の素数さん
22/12/22 12:59:36.06 5KL1nfbk.net
>>990
アメリカに行った、ガウスの二人の息子は
世間的には成功者なんだけどね
母親が病弱だったせいで、
いい子供時代を送れなかったようだけど
ガウスは息子を数学者にするつもりはなかったらしい
あとアメリカ行きにも反対したらしい
長男はかわいがったけど下の息子たちは
そうでもなかったらしい
全部wikipediaに書いてあったことだけどね
1084:現代数学の系譜 雑談
22/12/22 13:09:35.46 pIX7wrc1.net
>>988 追加
(引用開始)
>円分体の数のべき根表示を計算するなら、最も効率的
>(古典的によく研究されている)計算法はあります。
>教えませんがw
>これをフーリエ級数として解釈したところで
>計算上は何も変わりません。
ふっ、ぐだぐだと
言い訳をつらねるねぇ~!w
下記のおっさんの
「これはオリジナルな論なので、反論があれば歓迎する」
は、”円分体の数のべき根表示を計算する”限定だったのかぁ~?!!www
記
>>805より再録
(引用開始)
ラグランジュリゾルベントとは何か?というと
>>564に書いたように、根のべき根表示
(1) ξ=a_0+a_1α+ … +a_{n-1}α^{n-1}
において、「直交関係」を利用して
項別に値を取り出す計算式であり
(1)をフーリエ級数展開の類似物と見たとき
フーリエ積分に対応している。
(引用終り)
1)本来、数学では
”円分体の数のべき根表示を計算する、最も効率的方法が
フーリエ級数として解釈できる”と見抜いて
それを、円分体以外に拡張、一般化することがあるべき姿だろう?
2)ところが、彼は「ラグランジュリゾルベントとは・・
(1)をフーリエ級数展開の類似物と見たとき
フーリエ積分に対応している」として、それが
行き詰まると
「すでに、円分体の数のべき根表示を計算するなら、
最も効率的計算法」に逃げ込んでしまって
お茶を濁すw
なんだかなー
こいつの発言、「ラグランジュリゾルベントとは何か?というと・・
(1)をフーリエ級数展開の類似物と見たとき フーリエ積分に対応している」
で、何を言いたかったのかね?
竜頭蛇尾も、いいところだねw
1085:132人目の素数さん
22/12/22 13:21:11.10 5KL1nfbk.net
>>992
>数学ではそれ(円分体で成功した方法)を、
>円分体以外に拡張、一般化することが
>あるべき姿だろう?
とかなんとか言った後に
ガウスによるレムニスケートの等分による
モジュラー方程式の解法でも説明するなら
格好が付くんだが
なんだ阿呆の憎たれ口だけか、チッ
1086:現代数学の系譜 雑談
22/12/22 14:20:50.81 pIX7wrc1.net
>>991
>アメリカに行った、ガウスの二人の息子は
>世間的には成功者なんだけどね
>母親が病弱だったせいで、
>いい子供時代を送れなかったようだけど
>ガウスは息子を数学者にするつもりはなかったらしい
ありがとう
それ面白いね
1087:現代数学の系譜 雑談
22/12/22 14:25:20.88 pIX7wrc1.net
>>993
> ガウスによるレムニスケートの等分による
> モジュラー方程式の解法でも説明するなら
> 格好が付くんだが
ありがとう
次スレには、
余白は十分あるよ
1088:132人目の素数さん
22/12/22 14:32:53.61 U2wpEVxC.net
レムニスケート等分もアーベル方程式だから
原理的には同じだよ。アーベルがやってる。
ガロア理論で考えた方が見通しがいいだろう。
1089:132人目の素数さん
22/12/22 14:43:12.84 U2wpEVxC.net
巡回方程式のべき根解法=フーリエ級数展開の類似
は勿論、円分体限定の話じゃないよ。
ガロア群が巡回群であれば全く同じ。
σ(a^{1/n})=a^{1/n}ζ_n^k
と作用するのが
exp(2πi(x+y))=exp(2πix)exp(2πiy)
と作用する、さらに
σ∈G (Gはガロア群)とy∈R/Z
の類似を見ているわけ。多分、代数系の数学者に訊けば
「当たり前だよ」くらいに言われると思う。
ど素人ってそんなことも自明じゃないんだねww
1090:132人目の素数さん
22/12/22 14:57:15.14 U2wpEVxC.net
素人(ただしど素人除く)向けの課題
URLリンク(ja.wikipedia.org)
の下の方にある、ガウス和ヤコビ和とガンマ函数ベータ函数に
類似の公式が成立する理由をきっちり説明すること。
1091:現代数学の系譜 雑談
22/12/22 14:57:30.09 pIX7wrc1.net
>>997
>巡回方程式のべき根解法=フーリエ級数展開の類似
>は勿論、円分体限定の話じゃないよ。
>ガロア群が巡回群であれば全く同じ。
ありがとね
それなら、そういう説明すれば、良いよね
あと、「フーリエ級数展開の類似」と見るメリットの補足がほしいね
つまり、フーリエ級数展開にはこういう性質があって、その性質が使えるみたいな
1092:132人目の素数さん
22/12/22 15:22:20.76 U2wpEVxC.net
>「フーリエ級数展開の類似」と見るメリット
「べき根解法」が昔流行ったただのパズルではなく
数学的にも一定の意味があるということ
さらに、数学的に「自然なもの」とはどういうものか
を示している。
1093:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 143日 23時間 36分 55秒
1094:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています