純粋・応用数学・数学隣接分野(含むガロア理論)11at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)11 - 暇つぶし2ch997:やっぱ数学は整数論でしょ
22/12/18 19:39:57.61 HDZ6pZhB.net
中世イスラム
9世紀以降、アラビア数学は数論を熱心に研究するようになった。
先駆者とされる数学者はサービト・イブン=クッラで、
友愛数を求めるアルゴリズムを発見したことで知られている。
友愛数とは、2つの異なる自然数の組で、
自分自身を除いた約数の和が互いに他方と等しい。
10世紀にはイブン・タヒル・アル=バグダディが
サービト・イブン=クッラの手法を若干変えた手法を見つけている。
10世紀のイブン・アル・ハイサムは
偶数の完全数(その数自身を除く約数の和がその数自身と等しいもの)
を世界で初めて分類しようと試みたと見られ、
2^k-1 が素数のとき、2^(k-1)(2^k-1) が完全数となることを発見した。
またアル・ハイサムはウィルソンの定理を最初に発見した。
これは、p が素数ならば 1+(p-1)! が p で割り切れるという定理である。
彼がこの定理の証明を知っていたかどうかは不明である。
ウィルソンの定理という名称は、エドワード・ウェアリングが
1770年にジョン・ウィルソンがこの定理に気づいたと記したことに由来する。
ウィルソンも証明を知っていた証拠はなく、
ウェアリングも確実に証明法を知らなかった。
この定理を証明したのはラグランジュで、1773年のことである。
イスラム数学では友愛数が大きな役割を果たした。
13世紀のペルシア人数学者アル・ファリシは、
因数分解と組合せ数学の新たな重要な方法を導入して、
サービト数と友愛数の関係について新たな証明を見出した。
彼はまた、17296 と 18416 という友愛数も発見している。
通常これらはオイラーが発見したとされているが、アル・ファリシの方が早いし、
サービト・イブン・クッラ自身も知っていた可能性がある。
17世紀にはムハンマド・バキル・ヤズディが
友愛数 9,363,584 と 9,437,056 を発見しており、
これもオイラーより先である。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch