22/12/18 17:28:08.97 KUUXaCSx.net
平面 R^2 上の半径1の円と原点を通る周期2πの三角関数 f(x)=sin(x)、g(x)=cos(x) のグラフを眺めていました
平面 R^2 上の半径1の円と原点を通る周期2πの幾何的構造や
三角関数 f(x)=sin(x)、g(x)=cos(x) の独立変数xの値と従属変数 f(x) の値との対応
に関する解析的特性上、実代数的数全体からなる体K上πと線形従属な 0<x<π なる超越数は存在しないとのこと
或るπとは異なる超越数xが存在して、xに対して両方共に或る0とは異なる
実代数的数a、b (a≠0,b≠0) が存在して、xが x=aπ+b と表されるとする
ここに、πとは異なる超越数xのみの存在性を仮定した時点では、
直後にxに対して存在性が仮定される実代数的数a、b (a≠0,b≠0) を
用いてxが x=aπ+b と表されてはいないものとする。仮定から 2x/a=2π+2b/a であり、
f(2x/a)=sin(2x/a)=sin(2π+2b/a)=sin(2b/a)、g(2x/a)=cos(2x/a)=cos(2π+2b/a)=cos(2b/a)
また、2x/a-2π=2b/a は実代数的数であり、
f(2x/a-2π)=sin(2x/a-2π)=sin(2b/a)、g(2x/a-2π)=cos(2x/a-2π)=cos(2b/a)
よって、平面 R^2 上の半径1の円周上の2点 (f(2x/a)、g(2x/a))、(f(2x/a-2π)、g(2x/a-2π)) は
どちらも平面 R^2 上の半径1の円周上の2点 (sin(2b/a)、cos(2b/a)) に等しい
複素平面C上において、実数体R上実数1と純虚数iは線形独立であるから、
平面 R^2 から複素平面Cへの写像 h:R^2→C (y,z)→y+zi は加法+に関して同型である
故に、f(2x/a)+ig(2x/a)=f(2x/a-2π)+ig(2x/a-2π)=sin(2b/a)+icos(2b/a) であり、
オイラーの公式から exp(i2x/a)=exp(i(2x/a-2π)) を得る
仮定から、2x/a=2π+2b/a は実数の超越数であり、2x/a-2π=2b/a は実代数的数だから、
exp(i2x/a)=exp(i(2x/a-2π)) の両辺に対して多価の対数関数の値を取れば、
或る p≠0 なる整数pが存在して 2x/a=2x/a-2π+2pπ が成り立ち矛盾が生じる
この矛盾は、或るπとは異なる超越数xが存在して、xに対して両方共に或る0とは異なる
実代数的数a、b (a≠0,b≠0) が存在して、xが x=aπ+b の形で表されると仮定したことから生じたから、
背理法が適用出来て、背理法を適用すれば、如何なるπとは異なる超越数xに対しても
両方共に如何なる0とは異なる実代数的数a、b (a≠0,b≠0) が存在して、xが x=aπ+b と表わされることはない