純粋・応用数学・数学隣接分野(含むガロア理論)11at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)11 - 暇つぶし2ch956:132人目の素数さん
22/12/18 17:28:08.97 KUUXaCSx.net
平面 R^2 上の半径1の円と原点を通る周期2πの三角関数 f(x)=sin(x)、g(x)=cos(x) のグラフを眺めていました
平面 R^2 上の半径1の円と原点を通る周期2πの幾何的構造や
三角関数 f(x)=sin(x)、g(x)=cos(x) の独立変数xの値と従属変数 f(x) の値との対応
に関する解析的特性上、実代数的数全体からなる体K上πと線形従属な 0<x<π なる超越数は存在しないとのこと
或るπとは異なる超越数xが存在して、xに対して両方共に或る0とは異なる
実代数的数a、b (a≠0,b≠0) が存在して、xが x=aπ+b と表されるとする
ここに、πとは異なる超越数xのみの存在性を仮定した時点では、
直後にxに対して存在性が仮定される実代数的数a、b (a≠0,b≠0) を
用いてxが x=aπ+b と表されてはいないものとする。仮定から 2x/a=2π+2b/a であり、
f(2x/a)=sin(2x/a)=sin(2π+2b/a)=sin(2b/a)、g(2x/a)=cos(2x/a)=cos(2π+2b/a)=cos(2b/a)
また、2x/a-2π=2b/a は実代数的数であり、
f(2x/a-2π)=sin(2x/a-2π)=sin(2b/a)、g(2x/a-2π)=cos(2x/a-2π)=cos(2b/a)
よって、平面 R^2 上の半径1の円周上の2点 (f(2x/a)、g(2x/a))、(f(2x/a-2π)、g(2x/a-2π)) は
どちらも平面 R^2 上の半径1の円周上の2点 (sin(2b/a)、cos(2b/a)) に等しい
複素平面C上において、実数体R上実数1と純虚数iは線形独立であるから、
平面 R^2 から複素平面Cへの写像 h:R^2→C (y,z)→y+zi は加法+に関して同型である
故に、f(2x/a)+ig(2x/a)=f(2x/a-2π)



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch