純粋・応用数学・数学隣接分野(含むガロア理論)11at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)11 - 暇つぶし2ch953:1]  方程式の(n-1)次の係数/n次の係数 の値を c n-1個のラグランジュのリゾルベントを L1,L2,・・・,L[n-1] とする θ0+ θ1+    θ2・・・+   θ[n-1]=C θ0+ ζθ1+  ζ^2θ2・・・+ ζ^ (n-1)θ[n-1]=L1 θ0+ ζ^2θ1+  ζ^4θ2・・・+ ζ^ (n-2)θ[n-1]=L2 ・・・ θ0+ζ^(n-1)θ1+ζ^(n-2)θ2・・・+     ζθ[n-1]=L[n-1] したがって、方程式の係数からC,L1,L2,・・・,L[n-1]のn乗が求まれば n乗根でL1,L2,・・・,L[n-1]を求めることができ、 そこから、ζによって構成されるヴァンデルモンド行列の逆行列で 根θ0,・・・,θ[n-1]が求まってしまう ヘイ!なんてこったベイビー/(^o^)\




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch