22/12/14 08:27:52.99 h2KJkl9Z.net
>>723
(引用開始)
円分方程式の根は巾根だけを用いて表せるというと、そんなの当たり前じゃんといわれる。
どうして当たり前だと思うのかと聞くと、だって、1のn乗根は 1^{1/n}でしょ
だから円周n分方程式の根は、1^{1/n}のn通りの値のうちの適切なものを
選べばすべて書けてるじゃないの、というのだ。ギャフン。
(引用終り)
その話面白いな
1)まず、スタートを1^{1/n}ではなく
オイラーの式 e^2Πi=1からスタートすべき
2)つまり、話は複素数根の問題で
円周n分方程式の根は
e^2Πi/n=cos(2Πi/n)+i sin(2Πi/n)
と書ける
これが、問題の式だ
3)よって、三角関数の式 cos(2Πi/n)、 sin(2Πi/n)
この三角関数の1/n公式が、べき根だけで解ける(可解性)か?
が問題になるってこと
4)これを、解決したのが、
偉大なるガウス先生ってことです
(参考)
URLリンク(mathlog.info)
日曜数学会発表資料「1の19乗根を求めてみた話」子葉
ガロア理論 投稿日:06月19日 最終更新日:07月13日 (2022年かな?)
(追加参考)
file:///C:/Users/seta/Downloads/%E6%96%B9%E7%A8%8B%E5%BC%8F%E3%81%AE%E6%A0%B9%E3%81%AE%E5%88%86%E5%B8%83%E3%81%AE%E7%A0%94%E7%A9%B6%E3%81%8A%E3%82%88%E3%81%B3%E3%81%9D%E3%82%8C%E3%81%AB%E5%9F%BA%E3%81%A5%E3%81%8F%E6%95%99%E6%9D%90%E7%A0%94%E7%A9%B6.pdf
修士学位論文
方程式の根の分布の研究およびそれに基づく教材研究
宮城教育大学大学院 教育学研究科 (修士課程)
教科教育専攻 数学教育専修
17020 中野渡 峻也
学位授与年度 平成30年度