22/12/11 23:14:00.48 KrqrphNa.net
>>658 追加
> 3)上記 x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0は
> 下記 chiebukuro.yahoo
> 32x^5+16x^4-32x^3-12x^2+6x+1=0
> と係数の並びが逆だね(本質的には同じだろう)
1)上記二つの方程式は、逆数の関係で、
前者がcos(2kπ/11)、後者が1/cos(2kπ/11)で
ほぼ自明だが、x=1/yと置いて、前者に代入すると
(1/y)^5 + 6 (1/y)^4 - 12 (1/y)^3 - 32 (1/y)^2 + 16 (1/y) + 32=0
ここで、y^5を掛けて整式に直すと
1+ 6 y - 12 y^2 - 32 y^3 + 16 y^4 + 32 y^5=0
となって
32x^5+16x^4-32x^3-12x^2+6x+1=0 が得られる
なかなか面白い工夫ですね
2)cos(2kπ/11)を考える方が分かり易いだろう
円分体の理論が使える
円の11等分であり
x^11 -1=0を考えれば良い
x-1で割ると
x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1=0
ガロア群は(Z/nZ)×の乗法群(下記円分多項式より)で、位数10の巡回群((Z/nZ)*の群構造2.2)
つづく