22/12/11 16:17:30.26 KrqrphNa.net
>>488 追加
再録
1)>>472より
x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
の左辺は
Π_{k=1}^{5}(x-1/cos(2kπ/11)).
だったね
2)これ、>>371-373より
可解な既約5次方程式の代数解法には
必ず5乗根が必要なことを示せ。
注意:5乗根の中身が基礎体に含まれるとは限らない。
例:
x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
はQ上可解な既約5次方程式だが
5乗根の中身は、Q(ζ_5)の数になる。
(ζ_5は、1の原始5乗根。)
注意:検索コピペバカには解けない。
(仕組みが分かってないから。)
(引用終り)
1)良い資料が見つかった(下記)
2)”以下ζnで1の原始n乗根を表すものとし、係数体は既にこれを加えたQ(ζn)で考えるものとする(解の巡回の記事のQを全てQ(ζn)で置き換えても全く同じ議論が成立することに注意されたい*2”
とあるよね
3)上記 x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0は
下記 chiebukuro.yahoo
32x^5+16x^4-32x^3-12x^2+6x+1=0
と係数の並びが逆だね(本質的には同じだろう)
4)下記 Period-Mathematics 巡回多項式を代数的に解く
「一応公式化しておいたので共有しておく」で、5乗根使ってますよ(当然と思うけどw)
つづく