純粋・応用数学・数学隣接分野(含むガロア理論)11at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)11 - 暇つぶし2ch508:132人目の素数さん
22/12/07 23:28:48.68 hKlDg6++.net
>>459 補足
1)小話その1:
 就活集団面接で、AさんとBさんの後のCさんの発言の番
 面接官:では、Cさん、あなたの理解していることを説明してください
 Cさん:Aさんは分かっていない。Bさんも分かっていない・・・
 面接官:聞かれているのは、Cさん あなた自身の理解していることです。AさんやBさんが理解していないと言っても、あなた自身のポイントには成りません!!w
2)まあ、こういうことだわな
  >>391より
「では、>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?
 一般的な話として、可解な5次方程式でもいいですが。
 つまり、5乗根を取る操作をガロア拡大(クンマー拡大)
 にするなら、ζ_5は必然的に含まれますが
 最小分解体(方程式が一次式の積に分解する最小の体)
 には含まれるか否か?って質問です。」
(引用終り)
 これにどういう数学的意図があったのか?
 それを語ることが出来ず、
「他の人が分かっていない」と話をそらして、
 誤魔化す姿勢
 それが、数学落ちこぼれの遠因ではないだろうか?ww、

509:132人目の素数さん
22/12/08 00:10:31.61 Q7ZeUtjc.net
>>462 補足
・宮岡礼子語録:「本物の数学者は決して他者にマウンティングするようなことはしない」(下記)
・数学落ちこぼれのサルが、必死に他者にマウントしたがるのですwww
(参考)
URLリンク(www.saiensu.co.jp)
数理科学 2022年10月号 No.712
目次
研究室の窓
原点は極小曲面
宮岡礼子
P76
11.むすび
 数学には天才とよばれる人がいる。ランドセルに高木貞治の「解析概論」が入っていたとか、
16歳でプリンストン大学に入学したとか、
私の近辺にも、頭の中をのぞいてみたくなるようなすごい人がいる。
ただ、天才とよばれる人が実は大変な努力家であったり、人の数倍も仕事に打ち込んでいたり
するのはあとからわかること、またそうできること自体が天才たる所以かも」しれない。
大きな問題に取り組み苦しい思いも経験すると、偉大な業績を遂げた人の苦労が(僭越ながら)身に染みる。
そして、本物の数学者は決して他者にマウンティングするようなことはしない。

510:132人目の素数さん
22/12/08 00:14:48.56 Q7ZeUtjc.net
>>463 追加
URLリンク(ja.wikipedia.org)
宮岡礼子
宮岡 礼子(みやおか れいこ)は日本の数学者。理学博士。東北大学教授。専門は曲面論、超曲面論、可積分系、特殊幾何学、G‐構造論。夫は数学者の宮岡洋一。
URLリンク(ja.wikipedia.org)
宮岡洋一
宮岡 洋一(みやおか よういち、1949年 - )は、日本の数学者。中央大学理工学部教授、東京大学名誉教授。専門分野は代数幾何学。妻は数学者の宮岡礼子。
1977年に発表した論文でボゴモロフ・宮岡・ヤウの不等式を証明した(Miyaoka 1977)。
マックス・プランク研究所に在籍していた1988年、フェルマーの最終定理の証明にこぎ着けたと報じられたが、後に不備があることが判明し、完全な証明には至らなかった(Gleick 1988)。

511:🍎
22/12/08 00:41:40.79 lYmX3NFc.net
Zero-dimensional pi = 0
1/2 dimensional pi = 1/2
One-dimensional pi = 1
Two-dimensional pi = 2
3D Pi = 3
Four-dimensional pi = 4
Five-dimensional pi = 5
Six-dimensional pi = 6
Seven-dimensional pi=7
8 dimensional pi
π=8
9th pi = 9
10-dimensional pi=10
11-dimensional pi=11
12-dimensional pi = 12
±∞ infinity pi ≒
±3.141592653589793
Pi in one dimension 3 π=22/7≒
3.142857142857143
Infinite three-dimensional pi ≒
3.141592653589793
pi in 431×137 dimensions
π≒
3.145985401459854
infinity or one-dimensional pi≒
3.141592653589793
Infinite two-dimensional six-dimensional pi≒
Infinite two-dimensional six-dimensional pi≒6^0.5×ζ(2)^0.5=±
Pi
1/2 is 0 points!
The Riemann hypothesis is correct!

512:132人目の素数さん
22/12/08 04:31:15.40 faK6emHQ.net
>>459
>自分を誤魔化そうとしてもダメだよ
>数学は、他人との論争=ディベート ではない
>自分 vs 数学 だろうね
じゃ、中卒君は、まず、微積分と線型代数と対戦してねw
君にはまだガロア理論は無理www
>落ちこぼれ2号さんは、落ちこぼれ1号さんより、大分まし
中卒君は落ちこぼれ0号だなw
 数学者(バラモン)
>2号(クシャトリア:ガウス分かってる人)
>1号(ヴァイシャ:ガウス分かってないけど、微積分と線型代数くらいは分かってる人)
>0号(シュードラ:微積分と線型代数も分かってない人)

513:132人目の素数さん
22/12/08 04:41:16.78 faK6emHQ.net
1=落ちこぼれ0号 の戦績
微分積分
 無限乗積の収束=対数の和の収束 に気づかず
 全部が1より大きいなら∞に発散
 全部が1より小さいなら0に発散
 と初歩的誤りをぶちかますw
(級数でいえば、各項が全部正なら+∞、各項が全部負ならー∞、というようなもんw)
線型代数
 行列式を全く理解せず
 全ての正方行列に逆行列がある
 と初歩的誤りをぶちかますw
(行列式が0でない、という条件を忘れるくらいだから
 多変数の微積分における逆写像の重要条件、
 ”ヤコビアンが0でない”も理解してない)
これじゃそもそもワールドカップに出られんわw
ワールドカップ予選敗退とか
ワールトカップ決勝トーナメント敗退を
笑えんレベルwww

514:132人目の素数さん
22/12/08 04:50:49.31 faK6emHQ.net
>>462
>どういう数学的意図があったのか?
 「1こと落ちこぼれ0号が、ガロア理論を理解してるか?」
 2号の実例は、ガウスの円分方程式に関するものと思われる
 特殊ではあるが、それゆえに扱いやすい
 しかし、0号はただ読み飛ばしてるから何が何やらわからないw
 1号くらいになると、分かってなくても「あああれのことか」くらいは分かる
 ワールドカップに出られるかどうかはその違いw
 0号は、Jリーグからやり直せw

515:132人目の素数さん
22/12/08 08:03:56.84 Q7ZeUtjc.net
>>466
(引用開始)
 数学者(バラモン)



516:2号(クシャトリア:ガウス分かってる人) > 1号(ヴァイシャ:ガウス分かってないけど、微積分と線型代数くらいは分かってる人) (引用終り) 1)それって、2号氏に失礼だよ!w 2)彼の数学の実力は、不明だ 3)だが、私は彼の人にマウントしたがる態度を指して  宮岡礼子語録>>463:「本物の数学者は決して他者にマウンティングするようなことはしない」  と対比して、”数学落ちこぼれ”と判断して、そう呼ぶだけのこと 4)”1号(ウス分かってないけど”って、それなに??  ほとんど意味不明だが、額面通り受け止めると、  お主は代数系や整数論が、全然ダメってことか??w



517:132人目の素数さん
22/12/08 08:06:16.41 Q7ZeUtjc.net
>>469 タイポ訂正
4)”1号(ウス分かってないけど”って、それなに??
  ↓
4)”1号(ガウス分かってないけど”って、それなに??

518:132人目の素数さん
22/12/08 09:03:01.61 JYwL5OA7.net
>5乗根の中身は、Q(ζ_5)の数になる。
実はこれはまったく難しくない。
しかも遥に一般的に成立する命題に拡張できる。
「クンマー理論」で調べてみれば分かると思うが。
1に分からないのは本がちゃんと読めてない証拠。

519:132人目の素数さん
22/12/08 09:21:53.29 JYwL5OA7.net
x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
の左辺は
Π_{k=1}^{5}(x-1/cos(2kπ/11)).
だったね。この方程式の分解体はQ(ζ_11)∩Rで
位数5の巡回群C_5に同型と分かる。
(p=5n+1型の素数のときQ(ζ_p)の部分体を分解体
とするような、C_5をガロア群として持つQ上の
既約5次方程式を無限に作れることも分かる。)
これらの方程式はQ(ζ_5)上でも既約なままで
ガロア群はそのまま変わらない。
そして、Q(ζ_5)上でクンマー理論が適用できる。

520:132人目の素数さん
22/12/08 09:24:18.37 JYwL5OA7.net
>位数5の巡回群C_5に同型と分かる。
ガロア群が

521:132人目の素数さん
22/12/08 10:30:28.17 DUZaG8T7.net
>>469
ま、実は2号氏がバラモン、つまり数学者の可能性はある
>お主は代数系や整数論が、全然ダメってことか??
 ああ、0号同様になw

522:132人目の素数さん
22/12/08 10:36:14.86 DUZaG8T7.net
>>472
今、泥縄でやってみた
x^5+x^4-4x^3-3x^2+3x+1=0
検算した結果、合ってるっぽい
これでW大学には入れるなw

523:132人目の素数さん
22/12/08 11:03:47.54 JYwL5OA7.net
>>475
成程。Π_{k=1}^{5}(x-(ζ_11^k)+ζ_11^{-k})) ですね。
そっちの方が簡単ですね。

524:132人目の素数さん
22/12/08 11:12:27.34 DUZaG8T7.net
>>476
そうっす
ガウス和の意味が分かったっす…ちょっとだけw

525:132人目の素数さん
22/12/08 11:40:27.42 JYwL5OA7.net
ガウス和は、まず円周等分方程式の代数解法において
ラグランジュレゾルベントとして自然にあらわれた。
しかし、その絶対値は√p(ζ_pに対して)であるとか
ラグランジュレゾルベントの一般論を超えた性質を持つ。
ガウスはべき剰余相互法則の証明に利用したし
ディリクレのL函数の函数等式にあらわれたり
奥深く不思議な数。

526:132人目の素数さん
22/12/08 11:49:48.36 DUZaG8T7.net
>>478
アアアアア
ブラジルに翻弄される●国の気分(マジ)

527:132人目の素数さん
22/12/08 13:14:33.98 JYwL5OA7.net
>ま、実は2号氏がバラモン、つまり数学者の可能性はある
この程度の話に数学者もクソもないw
学生の頃、「一日中こんな話ばかりやってた一時期がある」程度の素人ですよw
ID:DUZaG8T7さんの専門は数理論理と見ている。

528:132人目の素数さん
22/12/08 13:33:04.55 DUZaG8T7.net
>>480
ゴメン ちょっと盛りましたw
同期でも整数論専攻の奴がいましたが
流石にそいつの前で
「ガロア理論、チンプンカンプンでしたわぁ」
とは言えんかッた
ボクの専攻は情報科学ですね
数理論理っぽいけどハッキリそうともいいづらい
よく考えると数学っぽいことは何もせんかったw

529:132人目の素数さん
22/12/08 14:41:07.09 AlFJCcQn.net
ま、数学科の落ちこぼれのボクからみても1は酷いね
大学数学の落ちこぼれ

530:132人目の素数さん
22/12/08 16:00:01.21 iidLJbcD.net
分解体がQ(ζ_31)の部分体である既約5次多項式
5 + x - 21 x^2 - 12 x^3 + x^4 + x^5

531:132人目の素数さん
22/12/08 16:01:05.49 iidLJbcD.net
数学に志があるひとは1を基準にしていてはダメだろう。
自分のレベルまで下げてしまうw
脳みそ腐りそうなんでちゃんと読んでなかったが
>>450の議論も相当酷い。
これはコピペじゃなくって、1さんオリジナルだろう。
これが1さんの裸の実力、したがって数学板に居座るためには
多くの参考文献やコピペに頼らざるを得ないのも分かる。
でも、何でそこまでして数学板に居るんだろう?
ある意味可哀そうなひとである。

532:🍎
22/12/08 16:03:51.30 Q5T503Ua.net
e^-iπ/2=-1/2
e^πi /1= -1
e^πi /-2=0
e^iπ/0=+
e^i π/∞≒=π^0
e^iπ/1= -
e^iπ/2=-1/2
e^i π/∞≒=π^0
11・・・・・・・・・・・∞ 0 t e i π / 2 ± 1
ζ(11)=ζ(10+1)
ζ(s+1)Γ(s+1)η(s+1)Γ(s+1)≒0
(s+1)(s+1)(s-1)(s-1)≒0

533:132人目の素数さん
22/12/08 16:05:47.07 CUjo5lUL.net
>>293の話は、過去なんどか繰り返し見た記憶がある
(詳細は忘れたが、Mizarって三猿みたいでw、妙に記憶に残っている)
de Bruijn、Automathは、知らなかったが
多分、これ知っている人は、日本では少ないと思うぞ!www

534:132人目の素数さん
22/12/08 16:10:47.33 CUjo5lUL.net
>>483-484
笑える
ID:iidLJbcD氏ね
どう見ても
あんたのレベル高いと思えないけどねwww

535:132人目の素数さん
22/12/08 17:11:54.60 CUjo5lUL.net
>>471-478
スレ主です
ID:JYwL5OA氏か
はっきり言って
あんまり賢そうに見えないのは
おれだけかな?w
1)>>472より
 x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
 の左辺は
 Π_{k=1}^{5}(x-1/cos(2kπ/11)).
 だったね
2)これ、>>371-373より
 可解な既約5次方程式の代数解法には
 必ず5乗根が必要なことを示せ。
 注意:5乗根の中身が基礎体に含まれるとは限らない。
 例:
 x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
 はQ上可解な既約5次方程式だが
 5乗根の中身は、Q(ζ_5)の数になる。
(ζ_5は、1の原始5乗根。)
 注意:検索コピペバカには解けない。
(仕組みが分かってないから。)
 (引用終り)
 だったろ?
3)で、私は回答>>381を書いた
 そこに、還元不能問題(不還元)についても記した
4)>>391 ID:R+sEJurg氏が
 「不還元の話は特に必要ないです」とか言い出した
5)で、私は >>399 で、「必要だよ」
 「”1の原始5乗根”の必要性 =不還元の話 だ」と諭してやったw
つづく

536:132人目の素数さん
22/12/08 17:14:12.74 CUjo5lUL.net
>>488
つづき
6)そこから、ぐだぐだ論点ずらしが始まった
 >>391「では、>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?
 一般的な話として、可解な5次方程式でもいいですが。
 つまり、5乗根を取る操作をガロア拡大(クンマー拡大)
 にするなら、ζ_5は必然的に含まれますが
 最小分解体(方程式が一次式の積に分解する最小の体)
 には含まれるか否か?って質問です。」
 ときたw
7)詭弁の常套手段で、難しそうな用語で、論点ずらしかよw
 ”最小分解体”ね、昔々聞いたことがある。反応に時間が掛かったが
 >>431に書いたように、x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0が
 Π_{k=1}^{5}(x-1/cos(2kπ/11))に由来するならば
 5つ全部実根で、最小分解体⊂R だから、ゆえに複素数のζ_5は「含まれない」
 つまり、ζ_5は虚数(実数でなく)、5つの実根の最小分解体は実数R内って話だ
8)で、さらに >>450の5)で ”なので、果たして彼は、
 この問い「>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」
 で何を問いたかったのか? 意味が分からないww”
 と茶化してやったら、今度は”クンマー理論”


537:ときたもんだw 9)どんどん、論点ずらししてさw  でもさ、数学って、それやっても何にもならんぜよ  そもそもの上記8)「>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」  で何を問いたかったのか? については、何も答えていないでしょww  数学大学4年のゼミなら、教授からどんどん突っ込まれて、轟沈でしょうねww (参考) https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%B3%E3%83%9E%E3%83%BC%E7%90%86%E8%AB%96 クンマー理論 クンマー理論は、例えば、類体論や一般のアーベル拡大を理解する上で、基本的である。クンマー理論は、充分に多くの1の根が存在するときは、巡回拡大は冪根をとるという操作によって理解できるという理論である。類体論における主要な難所は、1の余剰な根をなしで済ませる(つまり、より小さな体へと「降下」する)ことである。それはクンマー理論と比べて非常に難しい。 つづく



538:132人目の素数さん
22/12/08 17:14:41.98 CUjo5lUL.net
>>489
つづき
クンマー拡大

クンマー理論
クンマー理論(Kummer theory)は逆の命題をもたらす。K が n 個の異なる 1 の n 乗根を持っているとすると、exponent が n を割るような K の任意のアーベル拡大は、K の元の冪根をとることにより作られる。さらに、K× で K のゼロではない元全体のなす乗法群を表すとすると、exponent が n である K のアーベル拡大は、
K^x/(K^x)^n
の、つまり n 乗べきを法とした K^× の元全体のなす群の部分群に全単射で対応する。
(n√a:a∈K^X)
(引用終り)
以上

539:132人目の素数さん
22/12/08 17:42:24.05 CUjo5lUL.net
こんなのが
URLリンク(toyokeizai.net)
東洋経済
「数学嫌い」を放置する日本で人材が育たない事情
小・中学校で理解を無視した「暗記教育」が横行
芳沢 光雄 : 桜美林大学リベラルアーツ学群教授
2022/12/07

540:132人目の素数さん
22/12/08 17:45:18.09 CUjo5lUL.net
こんなのも
URLリンク(toyokeizai.net)
東洋経済
「数学って役立ちます?」東大生がMBA教授に質問
「仕事ですごく使います、安心してください」
嶋田 毅 : グロービス経営大学院教授、グロービス出版局長 / 西岡 壱誠 : 現役東大生・ドラゴン桜2編集担当 2022/12/07
ビジネスパーソン向けに数学を解説した『ビジネスで使える数学の基本が1冊でざっくりわかる本』を上梓したグロービス経営大学院教授の嶋田毅氏と、東大生がやっている学びのコツを紹介した『「学ぶ力」と「地頭力」がいっきに身につく 東大独学』を上梓した西岡壱誠氏が、「学ぶこと」について対談しました。
後編は「数学を学ぶ」ことについて。ビジネスパーソンはなぜ、数学を学んだほうがいいのか、教えてもらいました。
URLリンク(toyokeizai.net)
前編:仕事も勉強も共通「伸びる人、伸びない人」5つの差

541:132人目の素数さん
22/12/08 19:32:25.44 faK6emHQ.net
>>488
>スレ主です
 誤りw
 1は「スレ立てた人=スレ主」と誤解
スレ主 ー 通信用語の基礎知識
URLリンク(www.wdic.org)
「一般に
 スレッドを作った人が投稿の管理を任されるタイプのBBS
 で、スレッドを作った人をこう呼ぶ。」
「2ちゃんねるのように
 スレッドを立てた人には何の管理能力もないシステム
 ではスレ主とは言わない」
はい、ワンアウト
相変わらず底抜けの馬鹿だねぇwwwwwww

542:132人目の素数さん
22/12/08 19:37:22.92 faK6emHQ.net
>>488
>はっきり言って
>あんまり賢そうに見えないのは
>おれだけかな?w
12/8 JYwL5OA
=12/7 7Dy1IShG
=12/6 R+sEJurg
=12/5 C25GQM/F
はっきりいって、>>4


543:67のような大学1年レベルの基本的な事柄で みっともない間違いを1つならず2つもやらかすアホの1より 愚かなヤツなんてこの数学板にはおらんよ 467のダブルプレーでスリーアウトなwwwwwww



544:132人目の素数さん
22/12/08 19:44:32.43 xpFZils6.net
「スレ主です」というセリフは嫌われているようだ。

545:132人目の素数さん
22/12/08 19:48:34.29 faK6emHQ.net
>>488
>「”1の原始5乗根”の必要性 =不還元の話 だ」
 なぜそう妄想したのか知らんが、初歩の誤り
 例えば、5次方程式で、ガロア群が位数5の巡回群となるものがある
>>475はその例)
 で、これはQに方程式のある根αを添加した体で分解されるが、
 そのαは実根であり、したがって、Q(α)には1の原始5乗根は含まれない
(αは例えば2cos(2π/11)としてよい)

546:132人目の素数さん
22/12/08 20:08:13.79 faK6emHQ.net
>>489
全然トンチンカンなので全部割愛w
>>496で、5次方程式でガロア群が位数5の巡回群となるものは
1の5乗根が分解体に含まれないことを示した
こう書くと、ウカツな馬鹿(例えば1)は
「え?じゃ5乗根要らねえじゃん!」
と早とちりするだろう
し・か・し、1の5乗根が方程式の分解体に含まれなくても
方程式の解の表示には1の5乗根が必要なのである!
巡回多項式を代数的に解く Period-Mathematics
あのさ、ホントのリファレンスサービスってのは
こういうのをいうんだぜw

547:132人目の素数さん
22/12/08 20:17:08.10 faK6emHQ.net
>>497
Period-Mathematics は、はてなブログなのでリンクが張れないが、
内容はリゾルベント使って解けますよって話
その理屈はガロア理論に基づいてるってことだが
大学数学のオチコボレの1には生涯分からんだろうw
>>489-490
わけもわからずクンマークンマーって叫ぶのは
リファレンスサービスにもなんにもなってないw
>>491-492 
なるほど、1は考えもせずに解法丸暗記で入試を誤魔化したから
大学でものの見事にオチコボレたんだなw

548:132人目の素数さん
22/12/08 20:27:02.63 faK6emHQ.net
まあ、全部実根の方程式の根を表すのに1の5乗根使ってるんだから
それって不還元の例じゃんとか、馬鹿1はほざくんだろうが、
それは全然中身の理屈がないので問われたことに全然答えてない
答えは「リゾルベント」なんだが、1は理屈が分からないからそこに思い至らない
だからいってるじゃん、中卒が現代数学に興味持っても全く理解できないから無駄だって
今やってる朝ドラで、航空学校の教官が無能な学生を落第させるってのがあったけど
あれって愛だぜ かなわぬ夢を見させるってザンコクだからな 止め刺しれ殺すのが優しさw

549:132人目の素数さん
22/12/08 20:29:35.26 faK6emHQ.net
>>495
そもそも1のイキりっぷりが不快
自己評価が低いのをひっくり返したくて必死なんだろうが
1は論理力が実に低いから無理よ もう60過ぎてんだろ
いまさら無駄だから、これからの人生、数学以外の趣味に生きろよw

550:132人目の素数さん
22/12/08 20:47:12.13 xpFZils6.net
コピペによって
見栄を張る場所が
確保できたような錯覚に陥っている。

551:132人目の素数さん
22/12/08 20:50:38.04 faK6emHQ.net
>>501
そもそも他人が書いた文章の丸写しコピペでエクスタシーを感じる変態趣味が理解できんw

552:132人目の素数さん
22/12/08 20:53:05.72 faK6emHQ.net
数学は理解することでのみエクスタシーを感じる
理解もせん文章をコピペしても何のエクスタシーも感じない
1はなにかと「面白い」というが
何も理解できてないのに何が面白いのか
正直自分に嘘をつき続ける哀れなヤツとしか思えん


553:



554:132人目の素数さん
22/12/08 21:00:27.94 xpFZils6.net
>>503
みんなそう思っているから
ことさらあげつらうべきことでもない。

555:132人目の素数さん
22/12/08 21:01:39.11 faK6emHQ.net
>>504
1の●違いぶりが実に不快だから仕方ない

556:132人目の素数さん
22/12/08 21:14:47.77 xpFZils6.net
>>505
やりすぎは悪趣味

557:132人目の素数さん
22/12/08 21:32:11.52 faK6emHQ.net
>>506
数学が理解できないくせに理解してると嘘つく変質者の1は消えてほしい

558:132人目の素数さん
22/12/08 22:03:51.25 faK6emHQ.net
・独善的なHNやめてほしい
・トンチンカンなコピペやめてほしい
・意味不明な番号付けコメントやめてほしい
誰もそんなおかしなことしてないよ

559:132人目の素数さん
22/12/09 01:28:20.07 StZWSrLa.net
🍎Urusei ★★★★☆☆☆☆Yatsura
That’s one small step for a man, one giant leap for mankind.
π0↑0↑00↑0000↑
π0↑1↑2×3↑2
π0↑1☆☆↑★3
0=0
π^0≒ζfunction
1=ζ431↑137
431↑137=3
3↑8≒ζ431↑137
59,047↑3↑8
59,047
205,870,212,096,823
1.215601841368e19

560:132人目の素数さん
22/12/09 11:12:34.98 tzsKM43U.net
>>508
スレ主ですw
”嫌われている”>>495
いやなら、
このスレに来なくていいぞww
このスレで放し飼いにしているサル>>5が、必死に騒ぐw
まあ、外で暴れるより、このスレに放し飼いがましだろうよww
さて
1)傷口に塩をすり込んでほしいらしいなw
2)再度問う
 >>489 より再録w
 6)そこから、ぐだぐだ論点ずらしが始まった
 >>391「では、>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?
 一般的な話として、可解な5次方程式でもいいですが。
 つまり、5乗根を取る操作をガロア拡大(クンマー拡大)
 にするなら、ζ_5は必然的に含まれますが
 最小分解体(方程式が一次式の積に分解する最小の体)
 には含まれるか否か?って質問です。」
 ときたw
 7)詭弁の常套手段で、難しそうな用語で、論点ずらしかよw
 ”最小分解体”ね、昔々聞いたことがある。反応に時間が掛かったが
 >>431に書いたように、x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0が
 Π_{k=1}^{5}(x-1/cos(2kπ/11))に由来するならば
 5つ全部実根で、最小分解体⊂R だから、ゆえに複素数のζ_5は「含まれない」
 つまり、ζ_5は虚数(実数でなく)、5つの実根の最小分解体は実数R内って話だ
 8)で、さらに >>450の5)で ”なので、果たして彼は、
 この問い「>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」
 で何を問いたかったのか? 意味が分からないww”
 と茶化してやったら、今度は”クンマー理論”ときたもんだw
 9)どんどん、論点ずらししてさw
 でもさ、数学って、それやっても何にもならんぜよ
 そもそもの上記8)「>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」
 で何を問いたかったのか? については、何も答えていないでしょ
(引用終り)
おサルさん、代わりに答えてやりなよw
それだけ、ブイブイと必死に騒ぐのならねww

561:132人目の素数さん
22/12/09 11:24:34.29 AwVuxaPS.net
>>510
>スレ主です
>>493
管理能力ない主って一体…

562:132人目の素数さん
22/12/09 11:27:21.57 AwVuxaPS.net
>>510
>”嫌われている”?
 好かれる要素はないよな
>いやなら、このスレに来なくていいぞ
 はい脅迫 通報しました

563:132人目の素数さん
22/12/09 11:32:12.31 AwVuxaPS.net
>>510
>傷口に塩をすり込んでほしいらしいな
 サディストか 変態サンですね
>再度問う
 何が分からんのか分からんので答えようないよな

564:132人目の素数さん
22/12/09 11:47:12.20 AwVuxaPS.net
1はラグランジュのリゾルベントを理解するまで
ここに書くなよ

565:現代数学の系譜 雑談
22/12/09 12:20:26.23 tzsKM43U.net
スレ主ですw
>>512
>>”嫌われている”?
> 好かれる要素はないよな
ありがとね
じゃあ
もっとやるねw
コテハン付けるぜよww
>>513
>>再度問う
> 何が分からんのか分からんので答えようないよな
1)分からんとは言ってないぞw
2)再録>>510より
”そもそもの上記8)「>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」
 で何を問いたかったのか? については、何も答えていないでしょ”
3)これで問うているのは、質問の意図
 もっと言えば、5次の可解方程式で、
 自分が作って5つの実根を持つと分かっている>>488
 のにもかかわらず
 「>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」
 問うた数学的意味だよwww
4)”5つ全部実根で、最小分解体⊂R だから、ゆえに複素数のζ_5は「含まれない」
 つまり、ζ_5は虚数(実数でなく)、5つの実根の最小分解体は実数R内って話”
 だってこと。これに気づいてなかったとしか思えない、クソ質問だってこと
以上

566:132人目の素数さん
22/12/09 12:50:48.77 AwVuxaPS.net
>>515
>「>>372の方程式の最小分解体に
> ζ_5が含まれるか否か分かりますかね?」
>何を問いたかったのか?
>質問の意図
>数学的意味
 1は方程式のガロア群が巡回群ってわかったらどうやって解く?
 それが>>371の問
 で答えは、ラグランジュのリゾルベント
 1は10年もガロア理論のスレッド立て続けたくせに
 全然答えられなかったな
 何やってたの?マジで

567:132人目の素数さん
22/12/09 13:00:19.39 6tcmh4tK.net
含まれないと分かってるなら「含まれない」と答えればよかった。
しかし、1には答えられなかった。なぜか?
自分の頭で考えられない脳無しだし、1が以前言ってたこと
「1のべき根なんて最初から添加しておけばいいじゃん」
という粗雑な考えしかなかったからww

568:132人目の素数さん
22/12/09 13:06:47.89 6tcmh4tK.net
で、答えられなかったくせに、解答を知った上で
得意気に書いた自己流の証明が>>450
あのさ、どこがおかしいか分かる?
代数方程式の解について論じてるのに
代数的に独立だぁ? アホかw
よく見ると基礎体に係数が含まれてないじゃん。
この「証明」が1の本当の「実力」w

569:132人目の素数さん
22/12/09 13:16:43.12 6tcmh4tK.net
1のバカ発言。>>450
>根α1,α2,α3,α4,α5 が、代数的に独立とする
根たちは代数方程式をみたすのに「代数的に独立」ってどういうこと?

570:132人目の素数さん
22/12/09 13:21:32.74 6tcmh4tK.net
>ζ_5が、{α1,α2,α3,α4,α5}たちと代数的に独立(下記)ならば(そしてそれが普通だが)
それって証明すべきことを前提にしてませんかね?
aを不定元としてもいいよ。では、貴方の「証明」で
x^5-aの分解体にζ_5が含まれる理由はどうなりますかね?
説明できてませんね。証明失敗ですねw

571:132人目の素数さん
22/12/09 13:22:12.24 AwVuxaPS.net
>>517
要するに、1は2012/1/31 22:32に
最初のガロア理論スレッドを立ててから
現在に至るまで、全然分かってないのよ
結局、代数的に解くというのは
ラグランジュのリゾルベントを反復適用する
ってことで、もし任意の方程式でそれが可能なら
任意次数の対称群について、剰余群が巡回群になる
分解を繰り返して単位群に出来るはずだが
5次以上の対称群はそうなってないから無理
ってだけなんだが
ガロア理論が分からんというのは、実は
「代数的に解くというのは
 ラグランジュのリゾルベントを反復適用する
 ってこと」がわかってない
だからなんで可解性とかいう
「不可解」な定義が出てくんだ
と思っちゃう
ラグランジュのリゾルベントで解くしかない
と分かれば、ああ、何だ、それだけか、で終わりw
どうだ?これで数学板から昇天できるだろ?1
とか思うせいなん

572:132人目の素数さん
22/12/09 13:38:38.29 6tcmh4tK.net
>>521
ま、天下り的というか、教え方が悪いってのはあるかもね。

573:132人目の素数さん
22/12/09 13:50:11.10 AwVuxaPS.net
>>521
>どうだ?これで数学板から昇天できるだろ?1
 ついでにいえば、
 ラグランジュのレゾルベント
 を超える超代数的方法は
 トマエの公式とかある
 
 完全に終わったな

574:132人目の素数さん
22/12/09 13:57:10.25 6tcmh4tK.net
ガロアは標数0の場合で考えてるから
「既約方程式は重根を持たない」という命題は
自動的に成立する。
しかし、有限体も含めてとか、状況を一般的にしておこう
とすると、話はどんどんややこしくなっていく。
そういうので挫折するひともいるかもね。
「標数0のとき既約方程式は重根を持たない」の証明。
既約方程式f(x)=0が重根を持っているなら
f'(x)は次数1以上の多項式で、かつf(x)と共通根を持つ。
そこで、この2つにユークリッドの互除法を適用すると
定数でない最大公約式d(x)が基礎体の中で求められ
それはf(x)より次数が小さく、かつ割り切ることになる。
これはf(x)の既約性に反する。

575:132人目の素数さん
22/12/09 14:48:42.79 VGubpJF6.net
>>522
ま、Aさんはいい方だと思うんで
多分私の向学心のなさが原因ですw

576:132人目の素数さん
22/12/09 19:46:36.49 Eqis7K55.net
>>468
Jリーグどころかリトルリーグにも失礼だろ、
>>1の投稿者の集合Aにはシルバー向けサッカー教室を薦めるべきだ。
相手は『A=BかつA≠Bとなる数学が在ってもいい。それが21世紀の数学だよ。』発言の集合Aだ。

577:132人目の素数さん
22/12/09 19:55:36.03 Eqis7K55.net
>>503
分かるだろ
数学を理解してこそ得られるはずの楽しみを理解せずに楽しめる、ならぬ、愉しめるのは
虚栄心に基づき愉悦に浸るからだ。楽しみではなく愉しみ。穢れ。

578:132人目の素数さん
22/12/09 20:45:52.62 a5nyjbvB.net
愉悦とは
URLリンク(dic.pixiv.net)
「pixivや二次創作・ネット上での扱い
 Fateシリーズの1作品『Fate/Zero』の影響から、
 現在ではもっぱら他者が心を砕いて何かに力を尽くす姿を、
 破滅しかない結末を知りながら素知らぬふりで見て嘲笑う
 (時に背中を押して破滅に進ませる)という、
 かなり下衆な意味合いで使われるようになった。
 ただ、こちらもあくまで誤用であるという点に注意。」
ネットって変態が嘘ばっか書くので困る

579:132人目の素数さん
22/12/09 21:09:01.73 T+YnZBA1.net
w^3+x^3+y^3=z^3
Use ζ(2) to check whether the formula w^3+x^3+y^3=z^3 holds for all integers.
It becomes 2×3ζ(3) with ± from the integer.
6×ζ(3)⇔ζ(2)=π^2/6⇔ζ(3)⇔π^2
Therefore, since it converges, an integer is spewed out from the divergence of ζ(3)!
So integers exist.
So we found 42 with computer power!

580:132人目の素数さん
22/12/09 21:40:03.61 T+YnZBA1.net
There exists a natural number z that satisfies z^2 when the π^2 form of Fermat's Last Theorem is a multiple of 6.

581:132人目の素数さん
22/12/10 04:28:31.84 sxpPJ6rb.net
昔の数学者はユークリッドの第五公準(平行線公理)は
それまでの4つの公準にくらべて複雑な述べられ方をしていたこともあり、
実は平行線の公理は定理であって最初の4つの公理から証明が導ける
のではないかと思って、様々な考察と誤った証明を作り出しては誤りが判明する
という歴史を積み重ねてきた。いくらやってもうまく証明することに成功した
者がいないという歴史の積み重ねであった。
 もしすると、現代の数学の証明ができていない命題も、実は
今の公理の中からでは正しいという証明も、正しくないという証明も
導けないのかもしれない。たとえば、まだ知られていないなんらかの
公理が見つかっておらずに、それなしでは証明ができないのかもしれない。
 はたしてリーマン予想などにはそういう可能性は少しでもあるのだろうか??
 

582:132人目の素数さん
22/12/10 05:56:16.14 YlCNGCVp.net
>>531
選択公理と強制法ぐらいは挙げないと。

583:132人目の素数さん
22/12/10 07:38:32.91 meH3MbbN.net
>>531
>現代の数学の証明ができていない命題も、実は今の公理の中からでは
>正しいという証明も、正しくないという証明も導けないのかもしれない。
 決定不能命題、ってことですね
>たとえば、まだ知られていないなんらかの公理が見つかっておらず、
>それなしでは証明ができないのかもしれない。
 また、その公理を否定する命題を公理とすることで
 予想の否定が証明できるかもしれない

584:132人目の素数さん
22/12/10 07:41:49.83 meH3MbbN.net
>>532
選択公理がZFにおける決定不能命題であることが
強制法(forcing)によって証明された
ってことですよね
リーマン予想が数論における決定不能命題であると
強制法によって示せるかどうかは知りませんな

585:132人目の素数さん
22/12/10 07:56:13.63 meH3MbbN.net
ところで、このスレッドの名前を12から
「数学とその適用


586:」に変更することを提案します



587:現代数学の系譜 雑談
22/12/10 07:58:21.11 898jbfXT.net
>>520
どうも
スレ主です
ご指摘ありがとう
確かに、皆さんにご指摘の通りで、「代数的に独立」という用語が、全く不適切でした
よって
 >>450の書き直し下記
>>431 戻る
(引用開始)
1)>>391
「では、>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?
 一般的な話として、可解な5次方程式でもいいですが。
 つまり、5乗根を取る操作をガロア拡大(クンマー拡大)
 にするなら、ζ_5は必然的に含まれますが
 最小分解体(方程式が一次式の積に分解する最小の体)
 には含まれるか否か?って質問です。」
(引用終り)
1)いま、簡単にQ係数の既約5次方程式で重根を持たず、べき根で解けるものを取ったとする
 根α1,α2,α3,α4,α5 が、代数的に独立とする
2)下記 最小分解体の定義より、最小分解体は、Qに根α1,α2,α3,α4,α5を添加して
 Q(α1,α2,α3,α4,α5)と書ける
3)いま、ζ_5が、Q(α1,α2,α3,α4,α5)に含まれないならば(そしてそれが普通だが)
 ζ_5 not∈Q(α1,α2,α3,α4,α5) だよね
4)繰り返すが、{α1,α2,α3,α4,α5}たちが全て実根ならば、ζ_5 not∈Q(α1,α2,α3,α4,α5) だし
 仮に、{α1,α2,α3,α4,α5}に虚数根が含まれても、ζ_5がそれら虚数根を含む最小分解体に含まれないならば
 ζ_5 not∈Q(α1,α2,α3,α4,α5) であり、そのような場合こそ普通だろ
5)なので、果たして彼は、
 この問い「>>372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」
 で何を問いたかったのか? 意味が分からない
以上

588:132人目の素数さん
22/12/10 07:59:54.67 meH3MbbN.net
純粋数学と応用数学があるのではなくて、数学というものがあって、
それを諸問題の解決へ適用する事例がある、という認識です

589:現代数学の系譜 雑談
22/12/10 08:00:18.44 898jbfXT.net
>>536 タイポ訂正

 根α1,α2,α3,α4,α5 が、代数的に独立とする
  ↓
 根α1,α2,α3,α4,α5 とする

590:現代数学の系譜 雑談
22/12/10 08:01:06.76 898jbfXT.net
>>535
自分でスレ立てな

591:132人目の素数さん
22/12/10 08:12:21.33 meH3MbbN.net
>>536
現代数学の系譜 雑談 ◆yH25M02vWFhP さん
おはようございます
>Q係数の既約5次方程式で重根を持たず、べき根で解けるものを取ったとする
>根α1,α2,α3,α4,α5 が、代数的に独立とする
 「Q係数の既約5次方程式で重根を持たず、べき根で解けるもの」から
 「根α1,α2,α3,α4,α5 が、代数的に独立」がいえますか?
 もし、独立と云えないなら
>最小分解体の定義より、最小分解体は、
>Qに根α1,α2,α3,α4,α5を添加してQ(α1,α2,α3,α4,α5)と書ける
 について
「最小分解体は、(根α1,α2,α3,α4,α5 が、代数的に独立であるから)
 Qに5根α1,α2,α3,α4,α5全てを添加した
 Q(α1,α2,α3,α4,α5)としか書けない」
 とはいえませんが
 端的にいえば、根1個を追加したQ(α1)という形で書けませんか?

592:132人目の素数さん
22/12/10 08:13:52.64 meH3MbbN.net
>>539
スレッドを立てられないこともあり、提案させていただきました

593:132人目の素数さん
22/12/10 08:24:37.53 meH3MbbN.net
>>536
>ζ_5が、最小拡大体に含まれないならば
>ζ_5 not∈最小拡大体 だよね
 ええ、トートロジーですから
>(そしてそれが普通だが)
 ええ、トートロジーですから

594:132人目の素数さん
22/12/10 08:28:28.20 meH3MbbN.net
>>536
>{α1,α2,α3,α4,α5}たちが全て実根ならば、
>ζ_5 not∈最小拡大体 だし
 ええ、Qは全て実数だし、根が全て実数なら
 それをQに追加した体の要素も全て実数です
 一方、ζ_5は実数ではありませんから
 ガロア理論以前のこととして、
 高校生でも分かるかと思います

595:132人目の素数さん
22/12/10 08:33:14.30 meH3MbbN.net
>>536
>{α1,α2,α3,α4,α5}に虚数根が含まれても、
>ζ_5がそれら虚数根を含む最小分解体に含まれないならば
>ζ_5 not∈最小分解体 であり
 ええ、トートロジーですから
>そのような場合こそ普通だろ
 ええ、トートロジーですから
ところで、Q上の5次方程式f(x)のガロア群が位数5の巡回群の場合
・根は全て実根である
・最小分解体はQに根の1つαを追加したQ(α)である
がいえることは御存知でしたか?

596:132人目の素数さん
22/12/10 08:42:47.19 meH3MbbN.net
>>536
1)~4)のうち
・1)、2)については
 「Q係数の既約5次方程式で重根を持たず、べき根で解けるもの」と
 「根α1,α2,α3,α4,α5 が、代数的に独立」が
 両立することの証明がない
・3)および4)の後半は
 「・・・に含まれないなら、not∈」
 というトートロジーであり自明
・4)の前半は、実数の部分集合が、
 実数でない数を要素として持つことはない
 というもので、論理学におけるトートロジーではないが自明
ということで、残念ですが、誤りもしくは無内容、といわざるを得ませんでした

597:132人目の素数さん
22/12/10 08:48:49.89 d7i+9yuD.net
🍎algebra
Infinite addition of normal natural numbers
±1±2±3±4±5±6±・・・・・・±∞≒±1/12⇔
0=0,
0=0/0,
0=±∞/0,
0=±0/±∞,
0=±∞/±∞
±1/12=±0,±∞±1/2,±1,±2,±3,±4±,5,±6,±7,±8,±9,±10,±11,±12
when
-1/12⇔=0=⇔π^2/6
-1≈=π^2=e^πi ±1≈0=decimal
e^πi +1≒0⇔
→↑↓→e^πi±1←↑↓←

598:132人目の素数さん
22/12/10 09:06:15.83 meH3MbbN.net
>>372
「x^5 + 6 x^4 - 12 x^3 - 32 x^2 + 16 x + 32=0
 はQ上可解な既約5次方程式」
>>392
「372の方程式の最小分解体にζ_5が含まれるか否か分かりますかね?」
>>545
>何を問いたかったのか? 意味が分からない
そもそも、371の質問とそれに対する381の回答の中身が分かってますか?
>>371
>可解な既約5次方程式の代数解法には必ず5乗根が必要なことを示せ。
>>381
>方程式の群の可解列で、最後{e}の一つ前が、位数5の巡回群になる。
>これに対応するのが、5乗根の添加で 例えば x^5=aで
>ここから、1の5乗根が出る
392は回答381への追加質問として書かれてます
もっと分かりやすく質問しますが
Q1.
5乗根の添加ということで、あるaの5乗根を添加するとして
aはQの元?それともQではないある体の元?
後者だとした場合、いかなる体の元?
Q2
「5乗根の添加」によってつくられた解を添加した、元の方程式の最小分解体の中に、
5乗根そのものは要素として含まれる?

599:132人目の素数さん
22/12/10 09:06:19.73 dZ9h00o/.net
>>536
>1)いま、簡単にQ係数の既約5次方程式で重根を持たず、べき根で解けるものを取ったとする
> 根α1,α2,α3,α4,α5 が、代数的に独立とする
「代数的に独立」の意味が分かってないね。
代数的関係があれば代数的に独立ではない。
特に代数的数同士は代数的に独立ではない。
超越数とか不定元なら、代数的に独立になる。
だから多分、「根たちが不定元だ」と言いたいのだろう。
しかしその場合、基礎体はQに方程式の係数(つまり根たちの基本対称式)
を添加しなければならない。
そしてその場合、根たちは基礎体から代数的に導けるので
代数的に独立ではない。
代数方程式の根について論じてるのに、「代数的に独立」
という「魔法の言葉」で「証明」しようというのがバカだってこと。
正にトンデモ並の証明理解w

600:現代数学の系譜 雑談
22/12/10 09:16:33.15 898jbfXT.net
>>521
(引用開始)
「代数的に解くというのは
 ラグランジュのリゾルベントを反復適用する
 ってこと」がわかってない
だからなんで可解性とかいう
「不可解」な定義が出てくんだ
と思っちゃう
ラグランジュのリゾルベントで解くしかない
と分かれば、ああ、何だ、それだけか、で終わりw
(引用終り)
違うよ
確かに、ガロア第一論文では、命題VIIでラグランジュ リゾルベントを使っている
(彌永本 ガロアの時代・ガロアの数学 第二部が詳しい。この部分の解説もある。
 しかし、ガロアの”次数(n-2)!”の補助方程式が何を指すのか分からない などと、彌永先生の目から見て、意味不明な点もあるようだね)
さて
Lagrange resolventは、現代数学では一般化されて、Resolvent (Galois theory)となっている
従って、Lagrange resolventを使っても良いが、他のResolventを使うことも可能
(これについては、Cox ガロワ理論下 13.2 5次多項式が詳しい。実際、Lagrange resolventでなく 普遍6次分解式を使って説明している)
(参考)
URLリンク(en.wikipedia.org)(Galois_theory)
Resolvent (Galois theory)
Resolvents were introduced by Joseph Louis Lagrange and systematically used by Evariste Galois. Nowadays they are still a fundamental tool to compute Galois groups.
Terminology
・A Galois resolvent is a resolvent such that the resolvent invariant is linear in the roots.
・The Lagrange resolvent may refer to the linear polynomial
 Σ_{i=0}^{n-1} X_iω^i
つづく

601:現代数学の系譜 雑談
22/12/10 09:17:05.55 898jbfXT.net
>>549
つづき
Resolvent method
The resolvent method is just a systematic way to check groups one by one until only one group is possi


602:ble. This does not mean that every group must be checked: every resolvent can cancel out many possible groups. For example, for degree five polynomials there is never need for a resolvent of D_{5}: resolvents for A_{5} and M_{20} give desired information. (注:下記では、ラグランジュ・リゾルベントを上記の一般的なResolventに近い意味で使っている。また、代数的に解ける場合に限定している) https://www.slideshare.net/junpeitsuji/ss-16134472 Jan. 23, 2013 Junpei Tsuji 可解性を説明できる代数的手法? 五次方程式の解法五次の交代群は単純群かつ巡回群でない⇔ ラグランジュ・リゾルベントは存在しない⇔ 解の公式は存在しない76; 77. 方程式が解くことができる仕組みを説明したガロア理論。 ガロア理論を使って、五次方程式が解けないことを示すまで、を初学者向けに説明することを試みます。 わかりやすいことに念頭をおいて作ったため、多少の不正確さはあると思います。 興味を持った方はぜひ参考書にトライしてみてください。 ※2015/02/03 スライド63がちょっと正確でない気がしてきましたので、調査中です。近いうちに修正します。 https://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu/open/B50/pdf/B50_015.pdf ラグランジュとガウスの代数方程式論の比較的考察 高瀬正仁 九州大学 MI 研究所/日本オイラー研究所 P3 ラグランジュのいう 「一般原理」というのはいわゆるラグランジュの分解式を根 底におく解法原理のことである. (引用終り) 以上



603:132人目の素数さん
22/12/10 09:22:34.80 DV2XUKqW.net
>>550
以下の指摘に答えるべきなのは誰?
>1)いま、簡単にQ係数の既約5次方程式で重根を持たず、べき根で解けるものを取ったとする
> 根α1,α2,α3,α4,α5 が、代数的に独立とする
「代数的に独立」の意味が分かってないね。
代数的関係があれば代数的に独立ではない。
特に代数的数同士は代数的に独立ではない。
超越数とか不定元なら、代数的に独立になる。

604:132人目の素数さん
22/12/10 09:24:04.10 dZ9h00o/.net
>「代数的に解くというのは
> ラグランジュのリゾルベントを反復適用する
> ってこと」
これは完全に正しいよ。
1がなぜ数学が出来ないか?
自分の頭で考えないから。

605:132人目の素数さん
22/12/10 09:29:22.35 DV2XUKqW.net
自分の頭「だけ」で考えなければ
考えはなかなかまとまらない。
だからコピペになるのだろう。
と、自分の頭で考えた。

606:現代数学の系譜 雑談
22/12/10 09:38:34.27 898jbfXT.net
>>548
>「代数的に独立」の意味が分かってないね。
>代数的関係があれば代数的に独立ではない。
>特に代数的数同士は代数的に独立ではない。
>超越数とか不定元なら、代数的に独立になる。
>だから多分、「根たちが不定元だ」と言いたいのだろう。
どうも
スレ主です
「代数的に独立」の意味が分かってなかった
 用語の誤用がありました
(超越的との対比で使うべき用語だった)
なお、言いたいことは、>>536&>>538(タイポ訂正)です
(参考)
URLリンク(pweb.cc.sophia.ac.jp)
26. 超越拡大・代数的独立性
26-1. 代数的独立. 体の拡大 L/K に於いて、有限部分集合 S = {x1, . . . , xn} ⊂ L に対し、
・S : K 上代数的独立 (algebraically independent)
 ←⇒ φ : K[X1, . . . , Xn] → L; Xi  → xi: 単射準同型
 ←⇒ ∀x ∈ S : x が K(S r {x}) 上超越的
 ←⇒ ∀k = 1, . . . , n に対し、xk : K(x1, . . . , xk?1) 上超越的
 一般に、(無限かも知れない) 部分集合 S ⊂ L に対しては、
・S : K 上代数的独立 ←←⇒ S の任意の有限部分集合が K 上代数的独立
 ←⇒ ∀x ∈ S : x が K(S r {x}) 上超越的
URLリンク(www.math.s.chiba-u.ac.jp)
代数学続論講義ノート 安藤哲哉
p4
2. 代数拡大
代数的独立
(引用終り)
以上

607:132人目の素数さん
22/12/10 09:44:43.21 meH3MbbN.net
>>552
ええ、わかってます だまされませんよ
371の質問にジャストミートしてると思いますが
ラグランジュのリゾルベントの使用に関する
一番分かりやすい説明は以下ですね
累開冪拡大とガロア群の関係
URLリンク(hooktail.sub.jp)
ただ、以前にもここは見てたんですが、その時はピンとこなかった
はじめて「あぁぁぁぁっ!そうだったのか!」(昇天)と気づいたのは
はてなブログのPeriod-Mathematicsの
”「解の巡回」にトドメをさす!~ガロア理論による背景の完全解明~”の、
この言葉を見たとき
(解の)巡回関数
*V女優の告白じゃないですけど、はじめて「イク」体験をしました・・・

608:132人目の素数さん
22/12/10 09:59:55.69 meH3MbbN.net
>>554
「現代数学の系譜 雑談 ◆yH25M02vWFhP」さん
あなた・・・まだ、イッたことないですね
はっきりいいますが、もし5次方程式が代数的に解けるなら
5根を順繰りに巡る「巡回関数」がある体で存在する筈なんですわ
で、それは「5根が代数的に独立でない」ってことですわ

609:132人目の素数さん
22/12/10 10:15:26.68 d7i+9yuD.net
The type of space-time is
ζ、Γζη、ξ
0→M⇔➗⇔÷⇔2π^2

6・・・・・・π^2

6・・・・・・π^2
Solar system π^2 has 6 planets when the sun is given 0!

610:132人目の素数さん
22/12/10 10:56:26.59 d7i+9yuD.net
There are eight planets in the solar system, starting from the closest to the Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
Everything is
at πi
being Generated
it is Perfect.

611:132人目の素数さん
22/12/10 11:09:42.22 fUcDTqXn.net
>>536
間違ってるぞ
×どうも
スレ主です
○どうも
ゴミ虫です
◎どうも
クソ虫です
よく自覚しておく様に。

612:現代数学の系譜 雑談
22/12/10 11:42:51.16 898jbfXT.net
>>554
追加
書誌情報
URLリンク(pweb.cc.sophia.ac.jp)
角皆 宏(つのがい ひろし)のウェブページ 上智
URLリンク(pweb.cc.sophia.ac.jp)
2008年度の講義概要
URLリンク(pweb.cc.sophia.ac.jp)
代数学IIe・講義内容と予定
1/22(予定)
配る予定のプリント [page 16(pdf,39KB) |page 17(pdf,33KB) ]
Galois理論。Dedekind-Artinの方法。
URLリンク(pweb.cc.sophia.ac.jp)
26. 超越拡大・代数的独立性 page 17(pdf,33KB)
URLリンク(researchmap.jp)
安藤 哲哉
URLリンク(www.math.s.chiba-u.ac.jp)
安藤哲哉 千葉大
URLリンク(www.math.s.chiba-u.ac.jp)
講義ノート
代数学続論(体とガロア理論)Download (Algebta III)
URLリンク(www.math.s.chiba-u.ac.jp)
代数学続論講義ノート 安藤哲哉

613:132人目の素数さん
22/12/10 11:58:45.28 meH3MbbN.net
>>561
わかります イキたいのにイケない・・・最悪ですよね

614:132人目の素数さん
22/12/10 12:07:17.22 meH3MbbN.net
10年間
 検索→考えずに読む→分からんので怒って放り出す→・・・
というループを繰り返し続けてきたんでしょうね
なんで考えないんでしょう?
なんで計算しないんでしょう?
それは実は数学に全く興味がないからじゃないですか?
もしそうなら、数学諦めたほうが幸せになれるんじゃないですか?

615:132人目の素数さん
22/12/10 12:13:56.00 meH3MbbN.net
これはまったく自分の体験談として語るのですが
些細なきっかけにも気づかない、というのは
所詮その程度のうっすい興味でしかなかった
ってことなんですよ
ということでこの曲
きっかけ
URLリンク(www.youtube.com)


616:A8%E5%9D%8246OFFICIALYouTubeCHANNEL



617:132人目の素数さん
22/12/10 12:24:08.78 dZ9h00o/.net
ξをn次巡回方程式の根として、αを適切なn乗根として
ξ=a_0+a_1α+ … +a_{n-1}α^{n-1}
とあらわせる。これって要するにフーリエ級数展開ですよね。
ガロア群G(巡回群)⇔ R/Z
    α^k   ⇔ 固有函数 exp(2πikx)
    a_k    ⇔ フーリエ係数
という対応関係。
ラグランジュリゾルベントは、フーリエ係数の積分計算に対応する。
(正確には、係数a_kではなく、n a_kα^k が計算される。)
いずれにしても「直交関係」を利用しているわけ。

618:現代数学の系譜 雑談
22/12/10 13:11:23.02 898jbfXT.net
>>549 補足
 >>521
(引用開始)
「代数的に解くというのは
 ラグランジュのリゾルベントを反復適用する
 ってこと」がわかってない
だからなんで可解性とかいう
「不可解」な定義が出てくんだ
と思っちゃう
ラグランジュのリゾルベントで解くしかない
と分かれば、ああ、何だ、それだけか、で終わりw
(引用終り)
1)補足するよ
 原理的には、代数的に解ければ、ラグランジュのリゾルベントを反復適用できて解ける
2)なお、>>555 累開冪拡大とガロア群の関係
 URLリンク(hooktail.sub.jp)
 で、ラグランジェのリゾルベントでべき根拡大証明するのはありだが
 数学の証明は、複数の別証明がある場合が多いよ
3)しかし、リゾルベントは目的により、いろいろ選べる
 例えば、下記 5 次方程式の可解性の高速判定法にあるように
 ラグランジュのリゾルベント以外を使うのもあり
4)実際、Coxのガロワ理論下 13.2 5次多項式の節 では、ラグランジュのリゾルベントは使ってない
 そして、同13.3 分解式の節では、分解式を一般化してガロワ群を計算するための系統的な方法を得る とある
5)勿論、ラグランジェのリゾルベントを使うこともあって
 下記 Period-Mathematics 2019-05-11 可解な5次方程式のべき根による構成的解法
 Dummitによる1991年の論文"Solving solvable quintics"では ラグランジェのリゾルベントも使っている
(参考)
URLリンク(www.kurims.kyoto-u.ac.jp)
数理解析研究所講究録
第 848 巻 1993 年 1-5
5 次方程式の可解性の高速判定法
電子技術総合研究所 元吉文男 (Fumio MOTOYOSHI)
2. G(z) の計算法
G(z) は x_{1}, x_{2}, x_{3}, x_{4}, x_{5} の対称式であるので、原理的には G(z) の式を展開して、根と
係数の関係から z の係数を a_{1}, a_{2}, a_{3}, a_{4}, a_{5} で表すことができるが、計算量が膨大になる
ので以下に示す方法 [1] を利用する。
H(z) が求まれば G(z) も求まる。
H(z)=z^{6}+b_{1}z^{5}+b_{2}z^{4}+b_{3}z^{3}+b_{4}z^{2}+b_{5}z+b_{6}
とする。
つづく

619:現代数学の系譜 雑談
22/12/10 13:12:45.38 898jbfXT.net
>>565
つづき
URLリンク(period-mathematics.)<)も参考にした*1。
URLリンク(www.ams.org)
mathematics of computation
volume 57, number 195
july 1991, pages 387-401
SOLVING SOLVABLE QUINTICS
D. S. DUMMIT
(引用終り)
以上

620:132人目の素数さん
22/12/10 14:48:03.71 dZ9h00o/.net
>>564
一点だけ。
「ガロア群G上の函数」が定義されてませんでしたね。
これは「Gが作用している体Kの数」になります。
σ∈G, ξ∈K に対して
σ(ξ)と作用するわけですが、これを逆に見て
σ(ξ)を函数ξのG上の値 と見ればOK.
つまり、ξ(σ)とも書けますね。ξ(e)=ξ.
(通常は、ξ^σ のように書く。)

621:132人目の素数さん
22/12/10 14:48:05.36 meH3MbbN.net
>>565
>補足するよ
 どうぞ
>原理的には、代数的に解ければ、ラグランジュのリゾルベントを反復適用できて解ける
 それ、トートロジーですね
>なお、・・・ラグランジェのリゾルベントでべき根拡大証明するのはありだが
>数学の証明は、複数の別証明がある場合が多いよ
 ラグランジュのリゾルベントが使えない状況でも、代数的に解けますか?
>しかし、リゾルベントは目的により、いろいろ選べる
>・・・ラグランジュのリゾルベント以外を使うのもあり
 ラグランジュのリゾルベントと同等の方法なら同じことですよ
 同等というのは、ラグランジュのリゾルベントで解けるならその別方法でも解け
 逆に、その別方法でも解けるなら、ラグランジュのリゾルベントでも解ける、という意味
>実際、Coxのガロワ理論下 13.2 5次多項式の節 では、
>ラグランジュのリゾルベントは使ってない
>そして、同13.3 分解式の節では、分解式を一般化して
>ガロワ群を計算するための系統的な方法を得る
>とある
 方程式を解いて解を得る、ということでないなら
 例えばガロア群を計算するということなら
 ラグランジュのリゾルベントは使わないですよ
 
 分かってると思いますが、ガロア群の計算は求解計算ではありませんよ
>勿論、ラグランジェのリゾルベントを使うこともあって
>下記 Period-Mathematics 2019-05-11 可解な5次方程式のべき根による構成的解法
>Dummitによる1991年の論文"Solving solvable quintics"では
>ラグランジェのリゾルベントも使っている
 解を求めるなら、ラグランジェのリゾルベントを使うでしょう

622:132人目の素数さん
22/12/10 14:51:06.10 meH3MbbN.net
>>568
では、「現代数学の系譜 雑談 ◆yH25M02vWFhP」様に質問です
ラグランジュのリゾルベントを使うにあたり
分かってなくてはならないことがあります
それはなんでしょう?
ヒント
累開冪拡大とガロア群の関係
URLリンク(hooktail.sub.jp)
「ガロア群が巡回群 G(E/F)={1,φ,・・・,φ^n-1}だとすると( この仮定が重要! )、
 解 θ_0,θ_1,・・・,θ_[n-1] は、θ_0,φθ_0,...,φ^{n-1}θ_0 のように、
 θ_0 と φ だけを使って書き換えることができます。」
とありますが、このφってなんですか?φθ_0って何をやってるんですか?
(ヒントのヒント 
 Period-Mathematics 2019-05-04 巡回多項式を代数的に解く
 に書いてありますが、粗雑に流し読みすると、まあ見落としますね
 そういう人は・・・涅槃にイケません)
涅槃
URLリンク(ja.wikipedia.org)
涅槃(ねはん)、
ニルヴァーナ(サンスクリット語: निर्वाण、nirvāṇa)、
ニッバーナ(パーリ語: निब्बान、nibbāna)とは、
一般にヒンドゥー教、ジャイナ教、仏教における概念であり、
繰り返す再生の輪廻から解放された状態のこと。

623:現代数学の系譜 雑談
22/12/10 15:00:57.48 898jbfXT.net
>>547
お答えします
Q1
5乗根の添加ということで、あるaの5乗根を添加するとして
aはQの元?それともQではないある体の元?
後者だとした場合、いかなる体の元?
A1
簡単に基礎体を有理数Qとする
aの5乗根 a^(1/5)は、無理数とする
・実根のみを添加した体Q(a^(1/5))が考えられる
・実根以外も全て含めた体、Q(a^(1/5),ζ5)が考えられる(ζ5は、1の原始5乗根)
Q2
「5乗根の添加」によってつくられた解を添加した、元の方程式の最小分解体の中に、
5乗根そのものは要素として含まれる?
A2
簡単に基礎体を有理数Qとする
また、元の方程式を、既約で可解な5次方程式とする
5つの根を (a1,a2,a3,a4,a5)とする
最小分解体は一般的にQ(a1,a2,a3,a4,a5)と書ける(a1,a2,a3,a4,a5は減らせるかも知れないが今は不問とする)
 >>381に述べたように、ガロア第一論文の最後の定理から
位数5の巡回置換 (a1,a2,a3,a4,a5)が存在し、従って位数5の巡回群が方程式の群に含まれる
ここから、ある補助式から出るaがあって、a^(1/5)を含んだ式が出てくる(a^(1/5)は、上記同様無理数)
つまり、 (a1,a2,a3,a4,a5)たちは、a^(1/5)含んだ代数式(加減乗除とべき根)で表される
例えば、この式を ai=f(a^(1/5)) とでもしましょう (ここに、iは1~5のどれか)
最小分解体は、体だから加減乗除の逆演算が可能で、かつ任意の指数nのべき根についても、逆演算のn乗でべき根は外せる
だから、式f(a^(1/5)) に上記の逆演算を施すことで、f(a^(1/5))→a^(1/5)を最小分解体内に得ることは可能
つまり、既約で可解な5次方程式の最小分解体 Q(a1,a2,a3,a4,a5)には、方程式の係数から決まるある無理数a^(1/5)が含まれる

624:132人目の素数さん
22/12/10 15:26:35.68 meH3MbbN.net
2次方程式の場合
ax^2+bx+c の根の一つをαとする
このとき、
 ax^2+bx+c
=a(x-α)(x-(-α+b/α))
と表せる
ま、この程度なら高校数学

625:132人目の素数さん
22/12/10 15:30:32.08 meH3MbbN.net
>>570
採点します
>Q1
>5乗根の添加ということで、あるaの5乗根を添加するとして
>aはQの元?それともQではないある体の元?
>後者だとした場合、いかなる体の元?
>A1
>簡単に基礎体を有理数Qとする
>aの5乗根 a^(1/5)は、無理数とする
>・実根のみを添加した体Q(a^(1/5))が考えられる
>・実根以外も全て含めた体、Q(a^(1/5),ζ5)が考えられる
>(ζ5は、1の原始5乗根)
質問にはまったく答えられてませんね
質問は
「aはQの元?それともQではないある体の元?
 後者だとした場合、いかなる体の元?」
ですよ
ということですが、残念ですが、やり直し
まだ、涅槃にはイケませんね

626:現代数学の系譜 雑談
22/12/10 15:45:02.88 898jbfXT.net
>>568
>>なお、・・・ラグランジェのリゾルベントでべき根拡大証明するのはありだが
>>数学の証明は、複数の別証明がある場合が多いよ
> ラグランジュのリゾルベントが使えない状況でも、代数的に解けますか?
1)解けるよ
2)そもそも、なぜ根の置換が重要か?
 それは、下記の定理 6.3による
 (この定理と証明は、いろんな方程式論の本にある)
3)そして、下記「分解式を x1+ωx2+ ω^2x3 とおいたことは 天来の妙手としか言いようがないというこ
 とになってしまうので これの由来を説明する」
 とあるよ。ここ読んでね
4)もちろん、1のべき根は必要に応じて、添加できる前提だが
 (1のべき根は、代数的に可解なので、当然ですが)
(参考)
URLリンク(sitmathclub.github.io)
芝浦工業大学 数理科学研究会
URLリンク(sitmathclub.github.io)
2015
多項式の解法
芝浦工業大学 数理科学研究会
石川 直幹
P12
定理 6.3
有理式 f(x1,x2,・・,xn) を変えない置換によって 他の有理式 φ(x1,x2,・・,xn)が変わらないならば
φ=(a0+a1f+a2f^2+・・)/(a'0+a'1f+a'2f^2+・・)
のような恒等式が成り立つ
(注:つまり、φは式 fの有理式で表される)
P28
3 分解式の作り方
3.1 三次の場合
このままだと 分解式を x1+ωx2+ ω^2x3 とおいたことは 天来の妙手としか言いようがないというこ
とになってしまうので これの由来を説明する
(以下略。原文参照のこと。要するに、数ある分解式で、1次式で良さそうなものがこれって話です)
なお
P36
5 5次方程式の解法
その後の
6 補遺で5次方程式になぜ冪根解法がないかの探求をしているところは、参考になるだろう
(引用終り)
以上

627:132人目の素数さん
22/12/10 15:55:13.19 dZ9h00o/.net
>つまり、既約で可解な5次方程式の最小分解体 Q(a1,a2,a3,a4,a5)には、方程式の係数から決まるある無理数a^(1/5)が含まれる
>>570
だから、それが間違ってるって最初から言ってるじゃん。
Q(a1,a2,a3,a4,a5)/Q がガロア拡大であり、かつa^(1/5)が含まれるなら
a^(1/5)の「共役」もすべて含まれなければならない。(ガロア拡大の定義から。)
これはQ(a1,a2,a3,a4,a5)が実の体であれば矛盾する。
したがって、a^(1/5)は「含まれない」

628:132人目の素数さん
22/12/10 15:58:29.92 meH3MbbN.net
>>570
さらに採点します
>Q2
>「5乗根の添加」によってつくられた解を添加した、
>元の方程式の最小分解体の中に、
>5乗根そのものは要素として含まれる?
>A2
(略)
>5つの根を (a1,a2,a3,a4,a5)とする
(略)
>ガロア第一論文の最後の定理から
>位数5の巡回置換 (a1,a2,a3,a4,a5)が存在し、
>従って位数5の巡回群が方程式の群に含まれる
>ここから、ある補助式から出るaがあって、
>a^(1/5)を含んだ式が出てくる
>つまり、 (a1,a2,a3,a4,a5)たちは、
>a^(1/5)含んだ代数式(加減乗除とべき根)で表される
>例えば、この式を ai=f(a^(1/5)) とでもしましょう 
>(ここに、iは1~5のどれか)
>最小分解体は、体だから加減乗除の逆演算が可能で、
>かつ任意の指数nのべき根についても、逆演算のn乗でべき根は外せる
>だから、式f(a^(1/5)) に上記の逆演算を施すことで、
>f(a^(1/5))→a^(1/5)を最小分解体内に得ることは可能
>つまり、既約で可解な5次方程式の最小分解体 Qには、
>方程式の係数から決まるある無理数a^(1/5)が含まれる
結論からいうと・・・誤り
あなたの発言を額面通りに受け取ると以下がいえる
「いかなる体も加減乗除の逆演算が可能で、
 かつ任意の指数nのべき根についても、
 逆演算のn乗でべき根は外せる
 だから、体Q上の式f(x) に上記の逆演算を施すことで、
 f(x)→xを体Q内に得ることは可能」
つまり、Q上の方程式の根がQ上に存在するといえることになる!
・・・しかし、明らかに誤りですね 
だってx^2=2も、x^2=-1も、その根はQじゃないですから

629:132人目の素数さん
22/12/10 16:03:32.46 dZ9h00o/.net
1はa^(1/5)にガロア群がどう作用するかも分かってない?
σ(a^(1/5))=ζ_5の何とか乗×a^(1/5) のように作用する。
これが固有函数 exp(2πikx) と同じ性質なわけ。

630:132人目の素数さん
22/12/10 16:07:35.66 meH3MbbN.net
>>575
それにしても


631: 「最小分解体は、体だから加減乗除の逆演算が可能で、  かつ任意の指数nのべき根についても、逆演算のn乗でべき根は外せる  だから、式f(a^(1/5)) に上記の逆演算を施すことで、  f(a^(1/5))→a^(1/5)を最小分解体内に得ることは可能」 は 「任意の正方行列に対して、その逆行列が存在する」 に匹敵する発言ですね もし 「体F上の式f(x) に上記の逆演算を施すことで、  f(x)→xを体F内に得ることは可能」 だったら、 ・ピタゴラスは発狂して弟子を殺すことはなかった  (無理数なんて出てこないから) ・虚数なんて必要なくなった  (実数上の多項式は必ず実根を持つから) ・ガウスが代数学の基本定理を証明する必要もなかった  (だって自明な命題になっちゃいますから) ってことになります 数学史が劇的に塗り替えられますよ!



632:132人目の素数さん
22/12/10 16:10:39.88 meH3MbbN.net
>> ラグランジュのリゾルベントが使えない状況でも、代数的に解けますか?
> 解けるよ
これは誤りですね
「ラグランジュのリゾルベントを使わなくても」ではなく
「ラグランジュのリゾルベントが使えない状況でも」です
つまり、代数的に解け、かつ
ラグランジュのリゾルベントの式が成立しない場合があるか?
という質問です
そんな場合はあり得ませんよ

633:132人目の素数さん
22/12/10 16:55:19.27 meH3MbbN.net
ところで、4次方程式までなら代数的に解けるのであるから
そこから、逆に任意の(4次以下の)方程式の
「解の巡回関数」が求まることになる
2次方程式の場合(>>571の修正)
ax^2+bx+c の根の一つをαとする
このとき、
 ax^2+bx+c
=a(x-α)(x-(-α+b/a))
と表せる
 -(-α+(b/a))+b/a
=α-b/a+b/a

確かに巡回してるわ

634:132人目の素数さん
22/12/10 17:10:07.07 meH3MbbN.net
まあ、
「いかなる体も加減乗除の逆演算が可能で、
 かつ任意の指数nのべき根についても、
 逆演算のn乗でべき根は外せる
 だから、体Q上の式f(x) に上記の逆演算を施すことで、
 f(x)→xを体Q内に得ることは可能」
なんて、ナイーブな誤りを先入見として持ち続けてる人に
ガロア理論は理解できるわけないですね
だって「」内は
「アーベル・ルフィニの定理は間違ってる!
 方程式の次数がいかほど高くても、逆演算で解ける!」
って言ってるのと同じだもの
相ま、非ユま、ガロま
縁なき衆生は・・・

635:132人目の素数さん
22/12/10 17:12:01.24 meH3MbbN.net
>>580
「現代数学の系譜 雑談 ◆yH25M02vWFhP」さんは
以下のように改名したほうがいいですね
「アーベルもガロアも間違ってる ◆yH25M02vWFhP」

636:132人目の素数さん
22/12/10 17:17:59.49 meH3MbbN.net
「アーベルもガロアも間違ってる」はいそうでいないタイプですね
「ゲーデルは間違ってる」はなにげにいますね

637:132人目の素数さん
22/12/10 17:21:38.69 meH3MbbN.net
ガロまに漢字をあててみた
「俄魯魔」
1こと「現代数学の系譜 雑談 ◆yH25M02vWFhP」さんに差し上げます
「俄魯魔の集合A」

638:132人目の素数さん
22/12/10 17:26:45.06 meH3MbbN.net
俄魯魔の集合A 学位論文
いかなる体上のいかなる方程式も、その体上に根を持つ
「いかなる体も加減乗除の逆演算が可能
 かつ任意の指数nのべき根についても、逆演算のn乗でべき根は外せる
 だから、体上の式f(x) に上記の逆演算を施せば
 f(x)→xを体内に得ることが可能である!」
複素数体だったら200年前に「あるドイツ人」が証明したんだけどねえ
「代数学の基本定理」っていうんですが
URLリンク(ja.wikipedia.org)

639:132人目の素数さん
22/12/10 17:30:10.44 meH3MbbN.net
それにしても、長年数学板にガロア理論のスレッドを立ててた人の動機が、まさか
「ガロア理論は間違ってる!
 任意の体上の方程式はその体上に根をもつ!
 しかも具体的に逆演算で求められる!」
だったなんて、驚き桃の木山椒の木ですわ・・・

640:132人目の素数さん
22/12/10 18:13:23.60 90JrxjIA.net
「体K上のいかなる方程式も、その体上に根を持つ」ならKは代数閉体であるが、
有理数体も実数体も代数閉体でないことくらい中学生でも分かる
実際 X^2+1 は実根を持たない

641:132人目の素数さん
22/12/10 18:18:19.84 meH3MbbN.net
>>586
まったく同感
ただ、>>571の以下の文章は
任意の体は代数的閉体だと読めちゃうんですよ
「(a1,a2,a3,a4,a5)たちは、a^(1/5)含んだ代数式(加減乗除とべき根)で表される
 例えば、この式を ai=f(a^(1/5)) とでもしましょう (ここに、iは1~5のどれか)
 最小分解体は、体だから加減乗除の逆演算が可能で、
 かつ任意の指数nのべき根についても、逆演算のn乗でべき根は外せる
 だから、式f(a^(1/5)) に上記の逆演算を施すことで、
 f(a^(1/5))→a^(1/5)を最小分解体内に得ることは可能
 つまり、既約で可解な5次方程式の最小分解体 Q(a1,a2,a3,a4,a5)には、
 方程式の係数から決まるある無理数a^(1/5)が含まれる」

642:132人目の素数さん
22/12/10 18:19:00.64 meH3MbbN.net
>>586
まったく同感
ただ、>>570の以下の文章は
任意の体は代数的閉体だと読めちゃうんですよ
「(a1,a2,a3,a4,a5)たちは、a^(1/5)含んだ代数式(加減乗除とべき根)で表される
 例えば、この式を ai=f(a^(1/5)) とでもしましょう (ここに、iは1~5のどれか)
 最小分解体は、体だから加減乗除の逆演算が可能で、
 かつ任意の指数nのべき根についても、逆演算のn乗でべき根は外せる
 だから、式f(a^(1/5)) に上記の逆演算を施すことで、
 f(a^(1/5))→a^(1/5)を最小分解体内に得ることは可能
 つまり、既約で可解な5次方程式の最小分解体 Q(a1,a2,a3,a4,a5)には、
 方程式の係数から決まるある無理数a^(1/5)が含まれる」

643:現代数学の系譜 雑談
22/12/10 19:07:58.80 898jbfXT.net
>>574
(引用開始)
>つまり、既約で可解な5次方程式の最小分解体 Q(a1,a2,a3,a4,a5)には、方程式の係数から決まるある無理数a^(1/5)が含まれる
>>570
だから、それが間違ってるって最初から言ってるじゃん。
Q(a1,a2,a3,a4,a5)/Q がガロア拡大であり、かつa^(1/5)が含まれるなら
a^(1/5)の「共役」もすべて含まれなければならない。(ガロア拡大の定義から。)
これはQ(a1,a2,a3,a4,a5)が実の体であれば矛盾する。
したがって、a^(1/5)は「含まれない」
(引用終り)
スレ主です
1)言っている意味が分からん
2)最小分解体分かってますか?
 ガロア拡大がなんですと?
 混乱しているように見えるのは私だけかな?
3)Q(a1,a2,a3,a4,a5)は、最小分解体でありましてガロア拡大ではないよね
 2項方程式 x^5=a (a^(1/5)は無理数)で、
 ある無理数a^(1/5)を


644:、Q(a1,a2,a3,a4,a5)に含んでいても  それで、なんの不思議もないでしょ 4)Coxのガロワ理論下 P490に任意の可解な方程式で、x^5+ax+bの式の  明示的な解の公式の文献が、[1][29]にあると記されている  [29]がCharacterizaton of solvable quintcs x^5+ax+b Amer.Math.Monthy 101(1994),986-992  だが、キーワード Characterizaton of solvable quintcs x5+ax+b で検索すると下記などがヒットした  https://people.math.carleton.ca/~williams/papers/pdf/206.pdf  ROCKY MOUNTAIN  JOURNAL OF MATHEMATICS  Volume 28, Number 2, Spring 1998  ON SOLVABLE QUINTICS X5 + ax + b AND X5 + ax2 + b  BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS  これで代用するよ 5)ここには、可解の場合の解の公式があって、全て、a^(1/5)の形の5乗根を含む  それ当たり前でしょ? 2次で平方根、3次で立方根、5次なら5乗根を含むだろう 6)そして、可解の場合の解の公式だから、5つ全部実根の場合も含むよ



645:132人目の素数さん
22/12/10 19:30:19.98 dZ9h00o/.net
>>589
>2)最小分解体分かってますか?
> ガロア拡大がなんですと?
> 混乱しているように見えるのは私だけかな?
>3)Q(a1,a2,a3,a4,a5)は、最小分解体でありましてガロア拡大ではないよね
標数0の場合「基礎体上のある方程式の根」をすべて添加したらガロア拡大になる。
最小分解体とは既約方程式が1次式の積に分解している最小の体だから、ガロア拡大。
そんなことも分からないバカ野郎w

646:132人目の素数さん
22/12/10 19:41:57.44 dZ9h00o/.net
巡回方程式の根のべき根表示(フーリエ級数展開)
(1) ξ=a_0+a_1α+ … +a_{n-1}α^{n-1}
において、Q(ξ)の体にαが含まれるための必要十分条件は
Q(ξ)に1の原始n乗根ζ_nが含まれること。
それはラグランジュリゾルベントの計算を考えてみれば明らか。
逆に言えば、Q(ξ)にζ_nが含まれなければ
αはQ(ξ)には含まれない。それは表示式(1)と
まったく矛盾しない。

647:132人目の素数さん
22/12/10 19:50:36.30 dZ9h00o/.net
別の言い方をすると、巡回方程式の
根のべき根表示を得るにはクンマー拡大を経由する
基礎体にζ_nが含まれていなければ
少し大きい体を経由するする必要があるってこと。

648:132人目の素数さん
22/12/10 19:58:54.05 dZ9h00o/.net
>>372から言ってることが一貫してるでしょ?

649:現代数学の系譜 雑談
22/12/10 21:18:05.38 898jbfXT.net
>>590
(引用開始)
 >>589
>2)最小分解体分かってますか?
> ガロア拡大がなんですと?
> 混乱しているように見えるのは私だけかな?
>3)Q(a1,a2,a3,a4,a5)は、最小分解体でありましてガロア拡大ではないよね
標数0の場合「基礎体上のある方程式の根」をすべて添加したらガロア拡大になる。
最小分解体とは既約方程式が1次式の積に分解している最小の体だから、ガロア拡大。
そんなことも分からないバカ野郎w
(引用終り)
1)あららのら!w
2)>>488より再録
”3)で、私は回答>>381を書いた
 そこに、還元不能問題(不還元)についても記した
 4)>>391 ID:R+sEJurg氏が
 「不還元の話は特に必要ないです」とか言い出した
 5)で、私は >>399 で、「必要だよ」
 「”1の原始5乗根”の必要性 =不還元の話 だ」と諭してやった”
 これが、ズバリ当てはまるな!
3)下記で、5実根の場合は 最小分解体⊂R、つまり実の拡大体
4)一方、ガロア拡大なら実の拡大体では終わらない
5)これが、還元不能問題(不還元)です
(参考)
URLリンク(ja.wikipedia.org)
分解体
与えられた多項式の分解体(英: splitting field)とは、その多項式を一次式の積に因数分解 (splitting) できるような係数体の拡大体を言う。特にそのような拡大体のうち拡大次数(英語版)が最小となる最小分解体 (smallest splitting field) は多項式に対して同型を除いて一意に定まるため、最小分解体のことを指して単に分解体と呼ぶことも多い。
つづく

650:現代数学の系譜 雑談
22/12/10 21:18:29.18 898jbfXT.net
>>594
つづき
URLリンク(ja.wikipedia.org)
ガロア拡大
体の代数拡大 E


651:/F であって、正規拡大かつ分離拡大であるもののことである。 例 有理数体に、2の平方根を添加する(英語版)とガロア拡大を与えるが、2の立方根を添加すると非ガロア拡大を与える。標数 0 だからこれらの拡大はいずれも分離的である。前者は x2 ? 2 の分解体である。後者は1の虚立方根を含む正規閉包を持ち、したがって分解体ではない https://ja.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B%E5%BC%8F 三次方程式 還元不能の場合 実数解しかないのにも関わらず、カルダノの公式では負の数の平方根を経由する必要がある。 カルダノは負の数の平方根を計算に用いることはあったものの、それらの場合は不可能で役に立たないものと考えていた。 この還元不能の場合を回避するために様々な努力がなされたが、実は、虚数を避けて実数の冪根と四則演算を有限回用いただけで解を書き下すことは不可能であるため、全て徒労に終わった。 (引用終り) 以上



652:132人目の素数さん
22/12/10 21:32:15.09 meH3MbbN.net
>>589
>Q(a1,a2,a3,a4,a5)は、最小分解体でありましてガロア拡大ではないよね
混乱してますな 俄魯魔の集合Aさん
>>594
>5実根の場合は 最小分解体⊂R、つまり実の拡大体
>一方、ガロア拡大なら実の拡大体では終わらない
混乱してますな 俄魯魔の集合Aさん
次から次へと息を吐くように初歩的な誤りの嘘を吐きますな

653:132人目の素数さん
22/12/10 21:44:24.02 meH3MbbN.net
>>589
>2項方程式 x^5=a (a^(1/5)は無理数)で、
>ある無理数a^(1/5)を、Q(a1,a2,a3,a4,a5)に含んでいても
>それで、なんの不思議もないでしょ
2項方程式のガロア群は位数5の巡回群ではなくて位数20の群ですね
ガロア群が位数5の巡回群になる方程式もあります
そのような方程式の根は全て実根ですが、
根を求める式には1の5乗根は現れます
しかし、1の5乗根は最小分解体に現れません
どれか1つ根が求まれば、そこから有理関数である巡回関数で
他の4つの根が生成されるので、Qに根の1つを追加するだけで
最小分解体(もちろんガロア拡大体)ができますが、
どの根も実根なので、1以外の1の5乗根はどの4つとも入りません
だからいってるじゃないですか
根を表す式の中に1の5乗根が現れるからといって
最小分解体の中にそれが含まれるとはいえないんですって
10年前、初めてスレ立てたときに
ラグランジュの分解式(リゾルベント)って書いてたのに、
結局解き方が全然分かってなくていまだにそのままなんですね
いったい、何がしたいんですか?俄魯魔の集合Aさん

654:132人目の素数さん
22/12/10 21:46:08.47 DV2XUKqW.net
こういう無神経さが
数学科のメシを食ったことのあるちゃねらーたちを
ものすごくイラつかせることに気づいて
もう少し慎重にレスするようになれば
このスレも少しは落ち着くと思うのだが

655:132人目の素数さん
22/12/10 21:58:56.58 meH3MbbN.net
>>598
ま、でも彼も一つだけいい事をしましたよ
方程式論で初歩的な誤りを書き散らかしたせいで
初歩的かつ肝心なトラップを仕掛けてくれる人が出てきて
そのおかげで巡回多項式で重要なのは解の巡回関数と
ラグランジュの分解式(リゾルベント)だって
私に気づかせてくれたことです 
ま、肝心の彼は未だに気づいてないみたいだけど
いつか気づけるといいな(本心から)
いやぁ古典って大事だな
現代的なことばっかりやってると
動機が分からなくなるんでね

656:現代数学の系譜 雑談
22/12/10 22:17:25.55 898jbfXT.net
>>573 補足
wikipediaに下記があるので貼るよ
・ラグランジュのリゾルベントでは、解かなければならない方程式は24次式となり5次よりはるかに悪化する
・1861年にアーサー・ケイリーが与えたリゾルベントの6次方程式を解くことに帰着する方法が存在し、こちらが優れている
URLリンク(ja.wikipedia.org)
五次方程式(英語:quintic equation)とは、次数が5であるような代数方程式のこと。
限定的な代数的解法
一般式が代数的に解けないということは、上記に示したとおりであるが、特定の五次方程式がどのような場合�



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch