22/06/24 14:56:48.36 U07+QK3E.net
>>531
つづき
(参考)
URLリンク(ja.wikipedia.org)
一意化定理
分類
すべてのリーマン面はその普遍被覆の上の離散群(discrete group)の自由で固有な正則作用の商であり、この普遍被覆は次の中のひとつに正則同型(「共形同値」ということもある)である。
1.リーマン球面(曲率 +1)
2.複素平面(曲率 0)
3.複素平面内の単位円板/双曲平面(英語版)(Hyperbolic plane) (曲率 -1).
URLリンク(www2.meijo-u.ac.jp)
第 15 回 整数論サマースクール 報告集, pp.1-13
リーマン面と代数曲線 吉冨 賢太郎
P4
R0 を R の被覆リーマン面という. 被覆多様体の同型や自己同型群などは位相
写像のかわりに解析写像として同様に定義される. このようにして (閉) リーマン面を分類
するには単連結リーマン面を考え, その自己同型群の不連続部分群の共役類を求め, その代
表系に対応するリーマン面を考えればよいことがわかる.
而して, リーマン面は以下のように分類される.
定理 1.6. リーマン面 R は以下のいずれかと同型である. それぞれ, 普遍被覆リーマン面
が 楕円型, 放物型, 双曲型であるという.
略
(引用終り)
以上