Inter-universal geometry と ABC予想 (応援スレ) 67at MATH
Inter-universal geometry と ABC予想 (応援スレ) 67 - 暇つぶし2ch572:132人目の素数さん
22/06/24 14:54:44.19 U07+QK3E.net
>>520-522
必死の言い繕いと論点ずらし
ご苦労様ですw
(引用開始)
>>>f(z)は、Δでf(z)≠0という条件だけだから
>>>”Δ → ℂ\{0} ただし→がf(z)”は言えない
>>Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
>>fはΔからℂ\{0}への写像であること自体は
>>正しいのではないか?
>確かに、そういう解釈は可能だよ
そもそもそういう解釈以外不可能だろ
(引用終り)
それ、想定される回答の一つだった
だから、なんで>>513の時点で、それを言わないのかと思ったよw
想定回答に対する用意の応答を書いたのが、>>518-519だよ
いくつか、補足しておこう
1)関数f(z)は、「Δでf(z)≠0という条件だけ」だ。だから、f(z)=z+a (a>1)のように、全てのCを尽くすことも可
2)従って、f(z)の大域的なリーマン面は、全て可能(下記の 一意化定理 wikipedia、吉冨 賢太郎を ご参照)
3)従って、>>519 に記した f(z):Δ→D’で、Δは単連結だが、D’は単連結とは限らない
 実際、黒田の定理7.10 ピカールの定理(>>458)f(z)≠0、1の場合に、環状領域を成す(>>320)ので、単連結ではない
(なお、くどく指摘しておくが、>>103で「そしてΔが単連結だからΔ̅→Δは同型だからfが右側の↓を通過する事になる」書いたよねぇw
 で、D’が単連結でないから、同型じゃないよね?w どう言い訳するの?w )
4)あと、そもそもが、(>>29より)「Schottkyの定理の証明の最初の入り口
 リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話」
 だったw
 では聞く。>>103の図式で、f(z)のリーマン面(&普遍被覆リーマン面)、指数関数expのリーマン面(&普遍被覆リーマン面)を明示せよ!
上記指摘を踏まえて、>>103の図式をちゃんと定式化してみなよww
ツッコミどころ満載になりそうだねw
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch