Inter-universal geometry と ABC予想 (応援スレ) 67at MATH
Inter-universal geometry と ABC予想 (応援スレ) 67 - 暇つぶし2ch505:132人目の素数さん
22/06/22 07:24:31.79 v+I+p9gg.net
>>461-463
必死の論点ずらし

取り繕い
御苦労様ですw

506:132人目の素数さん
22/06/22 07:28:35.96 v+I+p9gg.net
>>460
(引用開始)
>いま調べたい関数が、
>f(z)=0だったり、f(z)=0&1だったりしても、
>ちょっと上下どちらかに動かせば、
>≠0や≠0&1にできるぞ
それ、前提が開円盤の場合、
全くの嘘ってことは理解したか?
(引用終り)
さて
1)黒田の補助定理:
 <オリジナル>(>>407より)
 ”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
 そこでf(z)≠0であるとすれば、Dで
 f(z)=e^h(z)=(g(z))^k (kは正の整数)
 をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
2)ここで、閉円板D’:|z|<=R で正則であっても、
 問題なく、黒田の補助定理は適用できる
 つまり、閉円板D’:|z|<=R で正則であったら、
 それは、開円板D:|z|<R でも正則であるから、黒田の補助定理は適用できるってこと
3)この場合は、>>455に書いたように、f(z)は閉円板D’で有界だから
 もし、開円板D内のあるaで、f(a)=0であったとしても
 ある定数Mが存在して、f(z)+M を作れば、0<|f(z)+M| で、f(z)+M ≠0とできて、黒田の補助定理が使える>>455
 ってことです
4)さらに、普遍被覆と持ち上げ論では、f(z)(但しf(a)=0)と f(z)+Mとは、両者は同一だが
 一方、黒田の補助定理の視点では、全く別物です
(つまりは、この問題では、普遍被覆と持ち上げ論は、ナンセンス!)
5)余談だが、同じことは、定理7.10 (ショットキ(Schottky))の f(z)≠0、1にも言えて、
 ”f(z)≠0、1”不成立としても、閉円板D’:|z|<=R で正則であれば、上記4)の手段(f(z)+M を作る)が適用できる>>455
なんか、これ分かってない人がいるね

507:132人目の素数さん
22/06/22 09:34:30.28 0myYY5b9.net
言いたいことはそれだけか

508:132人目の素数さん
22/06/22 11:49:33.98 Dzz+vFm/.net
>>465
>閉円板D’:|z|<=R で正則であったら、
>開円板D :|z|<R でも正則であるから、
逆は言えないけど
したがって開円盤のままなら
>もし、開円板D内のあるaで、f(a)=0であったとしても
>ある定数Mが存在して、f(z)+M を作れば、
>0<|f(z)+M| で、f(z)+M ≠0とできて、
とは言えないのでアウト!
一方、f(z)≠0をf(z)≠aとしても、
f'(z)=f(z)-aとすれば元の定理が使える
なんでf(z)=0が出てくるのか分からん
ま、大学入れなかった🐵の考えることなど
大学どころか大学院まで出た👱には理解できんわw

509:132人目の素数さん
22/06/22 11:51:49.82 Dzz+vFm/.net
>>465
>普遍被覆と持ち上げ論では、
普遍、は要らんよ

510:132人目の素数さん
22/06/22 11:54:09.87 Dzz+vFm/.net
>>464
やっぱり>>463は全く理解できんか 🐵にはwww

511:132人目の素数さん
22/06/22 13:30:56.55 qvuD6qGg.net
ともかくセタがアホなのは相手の言ってる事何にもわからんのに反論してくる
しかもなんの反論にもなってない文章、というより数学の文章として意味すら通らないアホ文章作ってくる
いみがわかる分からん以前に数学的に意味すら通らない文字列作成して悦に入る
ともかく無限に頭悪い

512:132人目の素数さん
22/06/22 13:46:51.97 2F1Gh5du.net
>>467
>一方、f(z)≠0をf(z)≠aとしても、
>f'(z)=f(z)-aとすれば元の定理が使える
>なんでf(z)=0が出てくるのか分からん
分からんかw
黒田の補助定理:(>>407より)
 ”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
 そこでf(z)≠0であるとすれば、Dで
 f(z)=e^h(z)=(g(z))^k (kは正の整数)
 をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
この前提条件
「f(z)はz平面の開円板D:|z|<R で正則であって
 そこでf(z)≠0であるとすれば」
これの否定で、正則は認めるとして、
”Dでf(z)≠0”を否定すれば
「f(a)≠0 a∈D」となる
分からんかw

513:132人目の素数さん
22/06/22 14:02:41.43 2F1Gh5du.net
>>470
>数学の文章として意味すら通らないアホ文章作ってくる
>いみがわかる分からん以前に数学的に意味すら通らない文字列作成して悦に入る
>ともかく無限に頭悪い
はい、それはあなた
ブーメラン
例えば>>103
数学的に意味不明
ことばのサラダ
統合失調症
あなたは
無限に賢いw

514:132人目の素数さん
22/06/22 14:08:34.15 2F1Gh5du.net
>>468
>>普遍被覆と持ち上げ論では、
>普遍、は要らんよ
そこ>>103の普遍被覆に合わせたんだ

515:132人目の素数さん
22/06/22 14:10:30.74 2Z2k0OkN.net
>>471
>>なんでf(z)=0が出てくるのか分からん
>分からんか
分からんな
>黒田の補助定理の前提条件
>「f(z)はz平面の開円板D:|z|<R で正則であって
> そこでf(z)≠0であるとすれば」
>の否定で…
何故、前提を否定するのか、その理由が分からんな

516:132人目の素数さん
22/06/22 14:11:42.10 2F1Gh5du.net
>>459
ネタ追加
URLリンク(imgur.com)
楕円曲線と超楕円曲線のリーマン面 リーマン面の理論 寺杣友秀 2019(P38はダブり)
URLリンク(imgur.com)
1.6 楕円曲線を複素数で考える(楕円曲線のリーマン面) P13 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
1.6 楕円曲線を複素数で考える(楕円曲線のリーマン面)つづき P14 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
1.6 楕円曲線を複素数で考える(楕円曲線のリーマン面)つづき2 P15 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
第3章 リーマン面のヤコビアン判定法 リーマン面の定義と正則関数 P38 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
3.3 超楕円曲線 リーマン面の定義と正則関数 P41 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
3.3 超楕円曲線つづき リーマン面の定義と正則関数 P42 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
3.3 超楕円曲線つづき2 リーマン面の定義と正則関数 P41 リーマン面の理論 寺杣友秀 2019

517:132人目の素数さん
22/06/22 14:20:11.13 zk7J1GTG.net
>>472
能無しがブーメランとか言ってるよ
俺は数学的に意味あることしか書かない
意味わからんのはお前が能無しすぎて理解できてないから
実際今の話にしてもお前以外全員意味わかってる
答えもわかってる
わかってないのはもうお前だけ
その事実すら認識できる能力すらない、おそらく数学板で史上全部見てもベスト5くらいの能無しだよ

518:132人目の素数さん
22/06/22 14:35:14.86 2F1Gh5du.net
>>474
(引用開始)
>黒田の補助定理の前提条件
>「f(z)はz平面の開円板D:|z|<R で正則であって
> そこでf(z)≠0であるとすれば」
>の否定で…
何故、前提を否定するのか、その理由が分からんな
(引用終り)
簡単な話
1)f(a)=0の場合、黒田本の補助定理や定理7.10(ショットキ(Schottky))は使えない
2)しかし、f(z)+Mという超簡単な操作で、f(a)=0を回避できて、それに対して定理が適用できるということ
 (定理7.10では、f(a)=1も解消しておかないといけないが)
3)なお、f(z)+Mという超簡単な操作では、関数f(z)の本質は変わらない
 だから、>>103の普遍被覆を使った議論は不成立
 (この3)が主張のメインかもw)

519:132人目の素数さん
22/06/22 14:37:55.85 2F1Gh5du.net
>>476
ハイハイ」、ことばのサラダね
統合失調症に言われてもなぁ~w

520:132人目の素数さん
22/06/22 14:41:06.84 5K4XnocG.net
>>478
そう、お前がやってるのは統失の言葉のサラダ
普通の人間なら意味のわからない言葉繋げて文章作ろうなどとは思わない
意味のわからない単語繋げて意味の通らない単語の羅列作って言葉の“ひびき”だけで満足する◯チガイ、そしてそれを認識�


521:烽ナきない人間っぽい日本の足手纏い



522:132人目の素数さん
22/06/22 15:24:02.16 7AiDcuQS.net
謎の勢力に苦しめられてるらしい人が傷付くかも知らんから
特定疾患名をディスるのは止めて差し上げろ。

523:132人目の素数さん
22/06/22 15:48:05.10 Rw1u38h+.net
【ブチャ虐殺】 ウソライナのデマソワ、解任される
://rio2016.2ch.sc/test/read.cgi/kokusai/1655264447/l50
URLリンク(o.5ch.net)

524:132人目の素数さん
22/06/22 19:46:20.65 qwoeeLq8.net
>>477
>>何故、前提を否定するのか、その理由が分からんな
>簡単な話
>1)f(a)=0の場合、黒田本の補助定理や
>定理7.10(ショットキ(Schottky))は使えない
そんなことは🐴🦌でもわかる
>2)しかし、f(z)+Mという超簡単な操作で、
>f(a)=0を回避できて、
開円盤のままでは回避できない、と指摘されたら
「ちょっと小さくすれば閉円盤がとれる」と曰ったが
🐴🦌丸出しの姑息な言い訳で流石大学に受からん🐵だ
と思った
>それに対して定理が適用できるということ
定理の適用範囲を拡大するのに
前提を全否定するのが流石🐴🦌
要するに値をとらない箇所を用いるのだから
単純にf(z)≠aなるaがある、と前提すればいい
そこに気づけないのは流石大学に受からん大🐴🦌
>(定理7.10では、f(a)=1も解消しておかないと
> いけないが)
これまた、f(z)≠a,bなるa,bがあるとして
(f(z)-a)/(b-a)≠0,1と置き換えればいい
> >>103の議論は不成立
理解できないから成立しないと喚くのが流石🐴🦌
大学に入れん🐵は数学板に書くな シッシッ

525:132人目の素数さん
22/06/22 20:32:57.88 v+I+p9gg.net
>>480
>謎の勢力に苦しめられてるらしい人が傷付くかも知らんから
>特定疾患名をディスるのは止めて差し上げろ。
どうも
良識あるご指摘ありがとう
アドバイスに従い、特定疾患名などは、
控えるように致します

526:132人目の素数さん
22/06/22 20:43:35.86 cu8t90Cj.net
よく議論が続くね

527:132人目の素数さん
22/06/22 20:48:06.18 ZO5bXCuX.net
議論なんか続いてないよ
こんなもん議論する余地なんぞない
教科書読んで意味わかるかどうかだけ
一名以外全員理解して納得してる

528:132人目の素数さん
22/06/22 20:49:35.40 bKHe/G2v.net
山形大学職員天羽優子@apjの本日の妄言    
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
心を病んだ人の阿Q式精神勝利法は意味不明なので
誰か健常者向け日本語に翻訳してください
特に、どこかの党の女性候補が国会議員になると
他の誰かを人権侵害する権利が生じるとする
負け犬特有の妄想が理解不能で笑えます
751 名無しサンプリング@48kHz[sage]
 2022/06/22(水) 20:34:58.63 ID:Yw5d5wYy
 今日告示があったけどかの女性が国会議員になったら
 捻り潰されるだろうね
 ネットも出来ないくらいに本格的に精神壊されるかもね
 まあ震えて眠れや

529:132人目の素数さん
22/06/22 20:53:03.60 S8ZN0Ouu.net
>>486
江川ダム

530:132人目の素数さん
22/06/22 20:57:02.57 v+I+p9gg.net
>>477 補足
簡単な話
というか、
ごく簡単な例を、しめそう
1)f(z)=z とする。いわゆる恒等写像 id (下記)
2)f(0)=0 だから、黒田の補助定理は使えないが
3)いま、>>29のように 単位円Δ |z|<1 で考えて
 f(z)+1 つまり、F(z)=z+1 を考えると、
 F(z)≠0だから、F(z)=z+1には、黒田の補助定理は使える
 さて、明らかに、zとz+1とは、被覆論で区別が付かない
4)少し大きい 開円板|z|<2 を考えると、F(z)=z+2 とすれば、黒田の補助定理は使える
 また、F(z)=z+3 とすれば、この開円板内で、F(z)≠1(当然≠0)と出来て、この場合 定理7.10(ショットキ(Schottky))も適用可
 zとz+


531:3 とは、被覆論では区別が付かない (参考) https://ja.wikipedia.org/wiki/%E6%81%92%E7%AD%89%E5%86%99%E5%83%8F 恒等写像 定義 厳密に述べれば、M を集合として、M 上の恒等写像 f とは、定義域および終域がともに M であるような写像であって、M の任意の元 x に対して f(x) = x を満たすものを言う[1]。言葉で書けば、M 上の恒等写像は、M の各元 x に x 自身を対応させて得られる M から M への一つの写像である[2]。 M 上の恒等写像はしばしば idM や 1M などで表される。 (引用終り) 以上



532:132人目の素数さん
22/06/22 21:13:09.68 ZO5bXCuX.net
>>448
なーんにもわかってない
まぁ自分が間抜けな事書き続けてるのはそろそろわかってるんやろ
それでも止まらない
何故か?
恥知らずだからだよ
だから働きもせず人から恵んでもらった金で生活しててもなんとも思わない
まず働け能無し

533:132人目の素数さん
22/06/22 21:28:33.59 v+I+p9gg.net
>>459 >>475
寺杣友秀 リーマン面の理論 2019
を補足しておく
1)まえがき(冒頭抜粋) URLリンク(imgur.com) リーマンは、「その定義域として採用したのが、リーマン面である」とある。最初は定義域だったらしいw
2)この例が、対数関数と平方根の一意化リーマン面 P31~34 ここは、多価になるのを 定義域に対し一意化リーマン面なるものを導入して、一価にする話(一価にする=一意化でしょう)
3)リーマン面の数学的定義を与えるのが、P36-37。この定義は抽象化され、定義域限定ではなくなっている
4)楕円曲線のリーマン面 P13~14 では、リーマン球面を導入して、トーラスを導く話
5)超楕円曲線は、P41~43 だが
 P37 平面曲線 w=f(z) から f(w,z)=0 なる複素平面曲線(陰関数) への視点の転換がある
 (定義域と値域の区別がなくなる)
 (P38のヤコビアン判定法 (下記陰函数定理)を使う)
ここら、寺杣友秀先生、うまく説明していると思った
URLリンク(ja.wikipedia.org)
陰函数定理
陰函数定理を述べるためには、f = (f1, …, fm) のヤコビ行列(函数行列)が必要である。それは f のすべての偏微分によって形作られる行列で、・・略

534:132人目の素数さん
22/06/22 21:37:44.29 d45ZDyMB.net
>>490
まず働け恥知らず

535:132人目の素数さん
22/06/22 21:43:03.78 M7UgCMnT.net
>>488
>zとz+1とは、被覆論では区別が付かない
>zとz+3とは、被覆論では区別が付かない
そもそもf(z)は被覆写像である必要がないが
被覆写像はg(z)だけ そんな根本すら分からん🐴🦌が
被覆論とか言うのがおかしくって腹がよじれるwww

536:132人目の素数さん
22/06/22 21:48:54.83 M7UgCMnT.net
>>490
正則行列が分からん🐵に
逆関数定理も陰関数定理も
分かるわけ有りませんが

537:132人目の素数さん
22/06/23 07:07:08.88 a95T6DpP.net
>>490 補足と訂正
 P37 平面曲線 w=f(z) から f(w,z)=0 なる複素平面曲線(陰関数) への視点の転換がある
 (定義域と値域の区別がなくなる)
 (P38のヤコビアン判定法 (下記陰函数定理)を使う)
  ↓
1)複素平面曲線(陰関数) への視点の転換は、良いが、
 ここは陰函数定理wikipediaの「例と導入」に説明があるとおり
 一価関数でない場合にも、曲線の一部に注目して、y=g(x)なる微分可能関数の存在を示すことにある(y=g(x)はwikipediaの表記)
 (P13 楕円曲線 で、y^2=x^3+ax^2+bx+c として、y^2=・・のまま。これで、y= の形になってない段階で、実質は陰関数ですね URLリンク(imgur.com)
2)なお、リーマン面の数学的定義では、特に定義域うんぬんの記述はないが、
 P36にあるように、位相空間X (ハウスドルフ)として、Ui∈X で、写像φi:Ui→C (Cは複素平面(P37記述より))
 で、φiが正則写像(P37)であることを要求しているので
 Xは、写像φiの定義域です
3)なので、具体的な関数w=f(z)(例えば寺杣P41超楕円曲線)を考えるとき、そのリーマン面とは、定義域を複素平面から位相空間X に拡張したものです
 (なお「自明なリーマン面の例として、複素平面Cの開集合が挙げられる」(P37)とあります)
詳しくは、寺杣 P36~37 を見てください
以上、補足と訂正でした

538:132人目の素数さん
22/06/23 07:11:31.09 a95T6DpP.net
>>491
病気だね
特定の病名は言わないが
しばらく、5chを離れたらどうだ?
病気こじれるよ

539:132人目の素数さん
22/06/23 09:02:27.22 zituSjZ7.net
>>495
働け乞食

540:132人目の素数さん
22/06/23 10:35:40.53 UYgInIKH.net
いや無能な工学部学部卒止まりが組織立って悪事働いて本当の数学が社会で活躍するの邪魔しまくってる象徴みたく見えるが

541:132人目の素数さん
22/06/23 14:59:29.24 6okYm70B.net
>>496-497
ふふ
悪いね
まあ、>>103みたいないい加減なカキコを見ると
ついつい、「こんなんで良いの?」とツッコミ入れたくなるんだ
寺杣を持ってきた意図もそれ
寺杣を、>>103にぶつけてやろうという意図ですww

542:132人目の素数さん
22/06/23 17:21:43.65 Ug1ofdlj.net
>>498
>>103は間違ってないが
C\{0}の普遍被覆が何か書いてないのが
素人には不親切である

543:132人目の素数さん
22/06/23 17:30:11.92 Ug1ofdlj.net
>>499
>>103を丁寧に書けば以下の通り
  g
 Δ→C
id↓ ↓exp
 Δ→C\{0}
  f
idは恒等写像(Δは単連結だから普遍被覆写像)
expはCからC/{0}への普遍被覆写像
つまりgはfの持ち上げ

544:132人目の素数さん
22/06/23 17:38:23.51 Ug1ofdlj.net
>>500
もう一つ書く
  g
 Δ→C\U
id↓ ↓exp(2πi cosh())
 Δ→C\{0,1}
  f
Uはexp(2πi cosh(z))=1となるz全体の集合
exp(2πi cosh())はC\UからC\{0,1}への被覆写像
ただしC\Uは単連結ではないから普遍被覆写像ではない

545:132人目の素数さん
22/06/23 17:43:24.22 Ug1ofdlj.net
>>501
最後の一つ
  g
 Δ→H
id↓ ↓λ
 Δ→C\{0,1}
  f
Hは上半平面
λはモジュラーλ関数
これは実は普遍被覆写像

546:132人目の素数さん
22/06/23 21:24:41.22 a95T6DpP.net
>>499-502
だから、>>103と同じ間違い
1)まず、>>103”Δ → ℂ\{0} ただし→がf(z)”ってあるよね
 これが、間違い
 ℂ\{0}は、ℂが複素平面で、\{0}で、点{0}を除いているんだが
 これは、指数関数 exp(z)には正しいが
 一般の関数f(z)には言えないぞ
2)つまり、>>29より 単位円Δ内 で値0を取らないというだけの規定だから
 単位円Δ内の外でなら、値0を取っても良いのです
3)実際、>>488に示したように、f(z)=z+1を考えると、単位円Δ |z|<1 でf(z)≠0
 しかし、Δの外のZ=-1 では、f(z)=0 をとるのです
4)同様に >>488に示したように、f(z)=z+3を考えると、開円板 |z|<2 でf(z)≠0、1
 しかし、Δの外のZ=-2 でf(z)=1、Z=-3 でf(z)=0 をとるのです
5)要するに、f(z)=z+a (あるa∈Cなる定数) は、その値域は全複素平面を尽くす
 (例えば、∀b∈Cに対して、b=z+a は、z=b-a とすれば良いのだ)
 だけど、ある領域 |z|<Rとかに限定して、ある特定の値を取らないように調整することは、十分可能だ
6)そして、すでに>>488に示したように
 例えば開円板 |z|<R で、f(z)=z+aでf(z)≠0、1 を取らないように、
 定数a∈Cを調整することは十分可能
7)f(z)=z+aは分かり易く例示しただけ。f(z)は多項式などにすることも可
 単に、f(z)≠0、1とするだけなら、多項式でなくとも、一般の関数でもいろいろ考えられる
 繰り返


547:すが、f(z)は一般の関数で可能 8)これ当たり前  一貫校なら高校レベルじゃね?



548:132人目の素数さん
22/06/23 21:49:30.23 PZRZJAYN.net
>>503
>1)まず、”Δ → ℂ\{0} ただし→がf(z)”が、間違い
> ℂ\{0}は、ℂが複素平面で、\{0}で、点{0}を除くが
> 指数関数 exp(z)には正しいが
> 一般の関数f(z)には言えないぞ
66スレの958を読み間違ってるね
「fを単位円Δ上定義された正則関数で
 0,1の値を取らないとする」
この瞬間
「一般の関数f(z)」
は完全な見当違いとして却下されました
御愁傷様 

549:132人目の素数さん
22/06/23 21:57:03.36 PZRZJAYN.net
>>503
>2)つまり、単位円Δ内 で値0を取らない
> というだけの規定だから 単位円Δ内の外でなら、
> 値0を取っても良いのです
 そもそもfの定義域はΔなので、
 その外なんて考える必要がありません
 考えなくていいことを考えるのは
 関数の初歩から分かってない証拠
 大学1年の4月からやり直そう

550:132人目の素数さん
22/06/23 22:09:47.15 PZRZJAYN.net
>>503
>3)実際、…
>4)同様に…
>5)要するに、…
>6)そして、…
折角自信満々で鼻膨らませて書いて頂いて恐縮ですが
全く無意味です
もしかして
7)f(z)=z+a…
は、f(z)=exp(g(z))となるg(z)が存在しない
と思ってます?
もしそうだとして、それ、正しいですか?

551:132人目の素数さん
22/06/23 22:22:45.48 PZRZJAYN.net
>>503
>8)これ当たり前
> 一貫校なら高校レベルじゃね?
 問題文に書かれた前提条件読み落とすようじゃ
 中高一貫校の入試は受かりませんね
 あなた、出身高校の偏差値はどの程度?
 70切ってるなら、申し訳ないけど、
 ここに書くのはやめたほうがいいよ
 いいたかないけど早慶の付属でも
 75は超えるんだから
 しかしその程度では数学科には入れても
 数学で博士の学位取って大学の先生になるのは
 至難だね

552:132人目の素数さん
22/06/23 22:39:08.73 PZRZJAYN.net
>>507
東大の数学の先生というのは、
だいたい御三家か国立大の付属出身で
しかもそこでも数学はトップレベルの成績
実際微積分なんて中学時代に勝手に学んじゃって
高校じゃ大学1〜2年の数学を勝手に学んでます
で駒場では数学科で学ぶことを勝手に学び
数学科では大学院で学ぶことを勝手に学び
大学院ではもう論文書いてます
それが当たり前の速さってことです
数学なんて講義で学ぶもんじゃないし
研究テーマなんて自分で見つけるもの
大学院生なのに大学1年の微積も線形代数も怪しい
とかいう工学部あたりの土人には一生辿り着けない

553:132人目の素数さん
22/06/23 22:50:11.13 PZRZJAYN.net
>>508
東大の理Ⅰは年間1000人とりますが
その中で数学科に行くのは40人程度
1/25ですね
その中で博士取って大学の先生になるのは
どの程度なんですかね?

554:132人目の素数さん
22/06/23 22:59:01.51 PZRZJAYN.net
コピペ君が何したいのか知らんけど
「自分にも最先端の数学が分かるかも」
と思ってるなら大学1年の数学からやり直しな
馬鹿馬鹿しい?じゃ諦めな
実は数学が全然好きじゃないってことだから

555:132人目の素数さん
22/06/23 23:39:50.76 a95T6DpP.net
>>505
(引用開始)
「fを単位円Δ上定義された正則関数で
 0,1の値を取らないとする」
この瞬間
「一般の関数f(z)」
は完全な見当違いとして却下されました
(引用終り)
おいおい誤魔化さないように、
お願いしますよ!w
まず、議論を簡単にするために、黒田を使うよ
黒田の補助定理:(>>407より)
 ”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
 そこでf(z)≠0であるとすれば、Dで
 f(z)=e^h(z)=(g(z))^k (kは正の整数)
 をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
ここで、関数f(z)に対する条件は
1)z平面の開円板D:|z|<R で正則
2)Dでf(z)≠0
条件は、この二つ
あとは、f(z)どんな関数でも可
初等関数から、高等関数、超越関数などなど、なんでもありです
この意味で、「一般の関数f(z)」で良いんだよww
定理7.10(>>458)は、f(z)≠0、1となるだけですよ

556:132人目の素数さん
22/06/23 23:50:37.20 a95T6DpP.net
>>506
(引用開始)
もしかして
7)f(z)=z+a…
は、f(z)=exp(g(z))となるg(z)が存在しない
と思ってます?
もしそうだとして、それ、正しいですか?
(引用終り)
それ、正しい
1)単位円板Dで考える(>>103)
2)a=1/2とする。f(z)=z+1/2 は、
 z=-1/2 で、f(-1/2)=0となる!
3)この場合、f(z)=exp(g(z))となるDで正則な関数g(z)は、存在しない
 というか、Dで正則などんな関数g(z)をもってきても、指数関数expを使う限り、f(z)=0が実現できない
 即ち、f(z)=z+1/2に対しては、Dでf(z)=exp(g(z))とできない

557:132人目の素数さん
22/06/24 06:09:21.84 dNAELeFU.net
>>511
誤魔化すなよ、🐵
>>503
>1)まず、”Δ → ℂ\{0} ただし→がf(z)”が、間違い
> 一般の関数f(z)には言えないぞ
と、吼えたのは🐵
つまり、🐵は
1)z平面の開円板D:|z|<R で正則
から
2)Dでf(z)≠0
は、導けないから誤りだと吼えた
今更、2)は前提だというのは誤魔化し
🐵は健忘症らしいwww

558:132人目の素数さん
22/06/24 06:16:36.57 dNAELeFU.net
>>512
じゃa=2なら?
一般にaがΔの要素でない場合は?
その場合は1),2)を満たすよ
🐵は如何なる場合も満たさんと吼えてるんだろ?
今更、違うと誤魔化すなよ 耄碌🐵www

559:132人目の素数さん
22/06/24 07:13:46.36 dNAELeFU.net
それにしても🐵のイチャモンは
どれもこれも大学1年4月レベルだな
大学一日も行ったことないだろ?
正直に白状してみ?

560:132人目の素数さん
22/06/24 07:19:14.15 XDMTvB+g.net
>>513-514
必死の曲解誤読による取り繕い、ご苦労w
それ詭弁でしょ?
こっちの主張は、>>503&>>511-512
つまり、>>103”Δ → ℂ\{0} ただし→がf(z)”が
一般には不成立
容易に分かる反例があるということ
当然ですよ。だって、f(z)は指数関数限定じゃない一般の関数だから
f(z)は、Δでf(z)≠0という条件だけだから
”Δ → ℂ\{0} ただし→がf(z)”は言えない(当然反例があるってこと)
それを、>>503&>>511-512で説明している
反例を使う議論は、一貫校なら中学1年レベルじゃね?

561:132人目の素数さん
22/06/24 08:43:22.07 NHJ0oU5g.net
>>516
>>f(z)は、Δでf(z)≠0という条件だけだから
>>”Δ → ℂ\{0} ただし→がf(z)”は言えない(当然反例があるってこと)
ここを読んだだけなので勘違いしているかもしれないが
Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
fはΔからℂ\{0}への写像であること自体は正しいのではないか?

562:132人目の素数さん
22/06/24 10:38:57.88 U07+QK3E.net
>>517
どうも
コメントありがとう
(引用開始)
>>f(z)は、Δでf(z)≠0という条件だけだから
>>”Δ → ℂ\{0} ただし→がf(z)”は言えない(当然反例があるってこと)
ここを読んだだけなので勘違いしているかもしれないが
Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
fはΔからℂ\{0}への写像であること自体は正しいのではないか?
(引用終り)
確かに、そういう解釈は可能だよ
しかし、そう解釈すると、”Δ → ℂ\{0} ただし→がf(z)”は
単に、与えられた条件 Δでf(z)≠0 を図解したにすぎないことになるよね
そう解釈すると、
 >>103 の図解で
Δ̅ ℂ̅\̅{̅0̅}̅
↓ ↓
Δ → ℂ\{0}
ただし→がf(z)、↓は普遍被覆、X̅はXの普遍被覆(ℂ̅\̅{̅0̅}̅がくるしいがじゃあなし)
(引用終り)
これが意味をなさないことになると思う
そもそもの問題は、>>29です
そして、いまの議論は、>>103 の冒頭部分
「そもそもなぜf(z)が0でなければf(z)がexpを通過できるのか、すなわちf(z) = exp(g(z))となるg(z)が取れるのかのところにリーマン面の話が入ってる」
に関する説明で、それが上記の図解です
この冒頭部分は、
黒田の補助定理:(>>407より)
 ”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
 そこでf(z)≠0であるとすれば、Dで
 f(z)=e^h(z)=(g(z))^k (kは正の整数)
 をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
が、該当します
つづく

563:132人目の素数さん
22/06/24 10:40:39.40 U07+QK3E.net
>>518
つづき
この>>103を書いた人の図解で
繰り返すが
”Δ → ℂ\{0} ただし→がf(z)”を
”単に、与えられた条件 Δでf(z)≠0 を図解した”
としたら、図解全体が実にトリビアルなものになってしまう
つまり、黒田の補助定理は
f(z):Δ→D’({0}を含まない)で
h(z):Δ→D’’、exp(z):D’’→D’で
exp(h(z)):Δ→D’’→D’
で、h(z)が Dでは正則な関数 とできるという主張
考えてみると、これは直観的には、ほぼ自明です
f(z)が正則だし、expも正則だから、もしh(z)が正則でないと、f(z)で正則で無くなるから(”矛盾”?w。これ背理法っぽいけどねぇw)
そこを厳密に証明しているのが、黒田本 です。詳しくは、>>458に張り付けた黒田本の画像の証明部分をご参照
上記図解も、この程度の「直感的なお話」というならそれでいい
だけど、もしこれが「厳密な数学」だというなら、ツッコミどころ満載でしょう
以上

564:132人目の素数さん
22/06/24 11:45:32.08 afTzGnON.net
>>518
>>>f(z)は、Δでf(z)≠0という条件だけだから
>>>”Δ → ℂ\{0} ただし→がf(z)”は言えない
>>Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
>>fはΔからℂ\{0}への写像であること自体は
>>正しいのではないか?
>確かに、そういう解釈は可能だよ
そもそもそういう解釈以外不可能だろ
頭オカシイのか?
>しかし、そう解釈すると、
>”Δ → ℂ\{0} ただし→がf(z)”
>は単に、与えられた条件 Δでf(z)≠0 を図解した
>にすぎないことになるよね
それの何がどういかんのか?
👱に分かるように説明してみろ 🐵

565:132人目の素数さん
22/06/24 12:00:09.91 afTzGnON.net
>>519
>黒田の補助定理は
>f(z):Δ→D’({0}を含まない)
>h(z):Δ→D’’、
>exp(z):D’’→D’で
>exp(h(z)):Δ→D’’→D’で、
>h(z)が Dでは正則な関数
>とできるという主張
>考えてみると、これは直観的には、ほぼ自明です
>f(z)が正則だし、expも正則だから、
>もしh(z)が正則でないと、f(z)で正則で無くなるから
もしかして、考えたのはそれだけ?
さすが大学入れなかった🐵だなwww
あのな、expが正則なだけじゃ
hが存在するとは言えないぞ
🐵はマジで逆関数定理分かってないな
expが定義域D''で微分が0でないという条件が
必要なことくらい意識せずとも脊髄反射しとけ
マジで死ぬぞwww

566:132人目の素数さん
22/06/24 12:11:39.73 afTzGnON.net
>>519
>「直感的なお話」というならそれでいい
>「厳密な数学」だというなら、
>ツッコミどころ満載でしょう
有界「開」集合の連続像が有界とかいう
🐵の発言は直感的にツッコミどころだらけだろw
「Δでf(z)≠0という条件だけだから
 ”Δ → ℂ\{0} ただし→がf(z)”は言えない」
とかトートロジー否定する☆違い発言ブチかます
🐵の分際で厳密とかいうなwww
笑いが止まらんwwwwwww

567:132人目の素数さん
22/06/24 12:40:09.28 hEJFBgGS.net
>>519
また能無しのカスがクズ文章書いとるわ
働け乞食

568:132人目の素数さん
22/06/24 13:26:34.55 Uy3th1Z/.net
>>しかし、そう解釈すると、”Δ → ℂ\{0} ただし→がf(z)”は
>>単に、与えられた条件 Δでf(z)≠0 を図解したにすぎないことになるよね
正しいかどうかだけを問題にすることは数学ではしばしば最も重要です。
「反例」という言葉の使い方にも気を付けたほうがよいのでは?

569:132人目の素数さん
22/06/24 13:47:16.25 /EZrNx6l.net
偉大な数学者達の生み出した可換図式の技法もこの能無しの乞食にはその価値も分からん
自分の事世紀の大天才とでも思ってるんやろ
完全に狂ってるわ

570:132人目の素数さん
22/06/24 14:03:49.58 X4vP5cNo.net
>>525
誤 天才
正 天災

571:132人目の素数さん
22/06/24 14:12:04.31 U07+QK3E.net
>>524
コメントありがとう
>正しいかどうかだけを問題にすることは数学ではしばしば最も重要です。
それはありと思う
厳密な証明の前にね
>「反例」という言葉の使い方にも気を付けたほうがよいのでは?
ありがとう。気を付けるよ

572:132人目の素数さん
22/06/24 14:15:45.38 X4vP5cNo.net
>>524
関数f:D→Rと書いたら
∀x∈D.f(x)∈R
(Dに属する任意のxに対して、f(x)はRに属する)
が成り立つと読む
それ以外の読み方は自己流誤読

573:132人目の素数さん
22/06/24 14:19:36.60 X4vP5cNo.net
>>527
>ありがとう。気を付けるよ
口先だけなら🐵でも言える
具体的に如何なる方法で気をつけるんだい?

574:132人目の素数さん
22/06/24 14:46:53.00 X4vP5cNo.net
>>529
基本的に
1.∀と∃の読み書きができない奴に数学書は読めない
(数学書に一切論理記号が出てこなくても)
2.開集合閉集合の定義も知らん奴に解析学は分からない
3.行列のランクも知らん奴に代数学は分からない

575:132人目の素数さん
22/06/24 14:54:44.19 U07+QK3E.net
>>520-522
必死の言い繕いと論点ずらし
ご苦労様ですw
(引用開始)
>>>f(z)は、Δでf(z)≠0という条件だけだから
>>>”Δ → ℂ\{0} ただし→がf(z)”は言えない
>>Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
>>fはΔからℂ\{0}への写像であること自体は
>>正しいのではないか?
>確かに、そういう解釈は可能だよ
そもそもそういう解釈以外不可能だろ
(引用終り)
それ、想定される回答の一つだった
だから、なんで>>513の時点で、それを言わないのかと思ったよw
想定回答に対する用意の応答を書いたのが、>>518-519だよ
いくつか、補足しておこう
1)関数f(z)は、「Δでf(z)≠0という条件だけ」だ。だから、f(z)=z+a (a>1)のように、全てのCを尽くすことも可
2)従って、f(z)の大域的なリーマン面は、全て可能(下記の 一意化定理 wikipedia、吉冨 賢太郎を ご参照)
3)従って、>>519 に記した f(z):Δ→D’で、Δは単連結だが、D’は単連結とは限らない
 実際、黒田の


576:定理7.10 ピカールの定理(>>458)f(z)≠0、1の場合に、環状領域を成す(>>320)ので、単連結ではない (なお、くどく指摘しておくが、>>103で「そしてΔが単連結だからΔ̅→Δは同型だからfが右側の↓を通過する事になる」書いたよねぇw  で、D’が単連結でないから、同型じゃないよね?w どう言い訳するの?w ) 4)あと、そもそもが、(>>29より)「Schottkyの定理の証明の最初の入り口  リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話」  だったw  では聞く。>>103の図式で、f(z)のリーマン面(&普遍被覆リーマン面)、指数関数expのリーマン面(&普遍被覆リーマン面)を明示せよ! 上記指摘を踏まえて、>>103の図式をちゃんと定式化してみなよww ツッコミどころ満載になりそうだねw つづく



577:132人目の素数さん
22/06/24 14:56:48.36 U07+QK3E.net
>>531
つづき
(参考)
URLリンク(ja.wikipedia.org)
一意化定理
分類
すべてのリーマン面はその普遍被覆の上の離散群(discrete group)の自由で固有な正則作用の商であり、この普遍被覆は次の中のひとつに正則同型(「共形同値」ということもある)である。
1.リーマン球面(曲率 +1)
2.複素平面(曲率 0)
3.複素平面内の単位円板/双曲平面(英語版)(Hyperbolic plane) (曲率 -1).
URLリンク(www2.meijo-u.ac.jp)
 第 15 回 整数論サマースクール 報告集, pp.1-13
 リーマン面と代数曲線 吉冨 賢太郎
P4
R0 を R の被覆リーマン面という. 被覆多様体の同型や自己同型群などは位相
写像のかわりに解析写像として同様に定義される. このようにして (閉) リーマン面を分類
するには単連結リーマン面を考え, その自己同型群の不連続部分群の共役類を求め, その代
表系に対応するリーマン面を考えればよいことがわかる.
而して, リーマン面は以下のように分類される.
定理 1.6. リーマン面 R は以下のいずれかと同型である. それぞれ, 普遍被覆リーマン面
が 楕円型, 放物型, 双曲型であるという.

(引用終り)
以上

578:132人目の素数さん
22/06/24 15:01:00.58 ycLw4uAY.net
>>531
論点など1ミリもズレとらんわ乞食
あの可換図式が理解できてない事こそお前の知能の限界なんだよクズ
そしてその大元の原因は
 働かなくても恥ずかしいと思えない恥知らず

の人間性が根本なんだよ乞食

579:132人目の素数さん
22/06/24 15:01:57.69 X4vP5cNo.net
>>530
🐵は石谷茂の「…に泣く」4部作でも読め
っていうか天才でもない限り、
大学数学に驚愕して慌てふためいた挙げ句
上記の本を読み救われるというのが現実
…みんな口にはしないけどなwww

580:132人目の素数さん
22/06/24 15:11:16.25 X4vP5cNo.net
>>531
>>>確かに、そういう解釈は可能だよ
>>そもそもそういう解釈以外不可能だろ
>それ、想定される回答の一つだったから、
>なんで>>513で、それを言わないのかと思ったよw
🐵が何をどう勘違いしてるか
🐵自身が語らなくては
🐵の誤りを正せないからな

581:132人目の素数さん
22/06/24 15:16:22.74 X4vP5cNo.net
>>531
>想定回答に対する用意の応答が、>>519


582:だよ その初歩的誤りの指摘が、>>521だが どこがどうわからなかったか? 微分が0でないと逆関数が存在するというところか?



583:132人目の素数さん
22/06/24 15:27:02.98 X4vP5cNo.net
>>531
>1)関数f(z)は、「Δでf(z)≠0という条件だけ」だ。
>だから、f(z)=z+a (|a|>1)のように、
>全てのCを尽くすことも可
🐵は相変わらず舌が足らんなw
「定義域をΔからC全体に拡張すれば」
全てのCを尽くすことも可、と言いたいらしいが
そもそも定義域を拡張する必要がない
g=log(z+a)でいい
aがΔの外ならべき級数で表せる
何の問題がある?

584:132人目の素数さん
22/06/24 15:41:41.05 X4vP5cNo.net
>>531
>では聞く。図式で、
>f(z)のリーマン面(&普遍被覆リーマン面)、
>指数関数expのリーマン面(&普遍被覆リーマン面)
>を明示せよ!
🐵が何故ガロア理論の本を読めないのか分かったw
自分勝手な問を立てて、その答えを探す
という読み方しかしてないだろ?
それじゃどんな数学書も読めんわw
数学の理論は🐵の問題意識とは独立だからな
他人の云うことを黙って一通り聞くだけの
心の余裕がない精神的貧民には学問は無理
ということで、🐵
トンチンカンな問題意識は今すぐドブに捨てろ

585:132人目の素数さん
22/06/24 16:00:57.73 X4vP5cNo.net
>>532
>(閉) リーマン面を分類するには
>単連結リーマン面を考え,
>その自己同型群の不連続部分群の共役類を求め,
>その代表系に対応するリーマン面を考えればよい
>ことがわかる
C\{0}の普遍被覆はCで、expはその被覆写像
C\{0}の基本群は加法群Zだが
その部分群nZで割った商群Z/nZに対応する被覆が
C\{0}のn重被覆C\{0}で、z^nがその被覆写像
exp(z)=(exp(z/n))^n
穴がn個の平面でも同様のことは可能
ただし基本群が可換でないから
正規部分群をとる必要がある
(でないと商群ができない)

586:132人目の素数さん
22/06/24 20:59:27.92 XDMTvB+g.net
>>533-539
必死の言い繕いと論点ずらし
ご苦労様ですw
繰り返すw
では聞く。>>103の図式で、
1)f(z)のリーマン面(&普遍被覆リーマン面)、
2)指数関数expのリーマン面(&普遍被覆リーマン面)
を明示せよ!w

587:132人目の素数さん
22/06/24 22:03:12.72 AMcb4rjq.net
>>540
お前に圏論の技術解説できるわけないやろカス
こういう具体例を通じてそれを積み上げていった先に圏論のテクニックがある
賢い奴はそんなもん解説されなくても自分で感じ取って行ける
アホ「図式なんか関係ないやん」
アホ~w能無し~wwwwカス~wwwww
数学のセンスも知能も全くないわカス~wwwwwwwww
まず働け能無し
税金払ってるのアホらしなるわ

588:132人目の素数さん
22/06/24 23:00:30.09 XDMTvB+g.net
>>540
必死の言い繕いと論点ずらし
ご苦労様ですw
>お前に圏論の技術解説できるわけないやろカス
ふww
私が解説するのではない!
ツッコミを入れているんだよ、
質問の形でね
なんでもそうだが、実際に自分がやる十分の一以下の力で、
ツッコミや質問は可能だ
あたかも、プロの音楽の演奏や、絵画の名作は描けなくとも
演奏を聴いたり、名画の鑑賞は、素人でもできるが如しw
で、突然、圏論持ち出して
笑えるよ
あんたがやるべき事は、数学の議論としては
自分の書いた>>29>>103を、数学的に擁護することだ
それが出来ないんだ
だから、圏論持ち出して、論点ずらしか
笑えるw

589:132人目の素数さん
22/06/24 23:12:16.03 aTvXcgvA.net
>>542
突然圏論wwwwwww
アホ~wwwwwwww
最初から最後までずっと圏論の話じゃアホ~wwwwwwwwww
能無しwwwwwwwwwwwww

590:132人目の素数さん
22/06/25 03:01:43.59 iUyhy4BH.net
通りすがりはキツネにつままれたようだ

591:132人目の素数さん
22/06/25 05:16:35.57 CDMP7v+2.net
>>540
>繰り返す
>>538読んだ? いい加減
自分勝手な問題設定
の自爆展開から抜け出そうぜ
expが被覆写像で、f()=exp(g()) なら、gはfの持ち上げで
持ち上げは無条件に存在するわけでないが
fの定義域が単連結なら存在する
(


592:被覆が普遍被覆か否かに関わらず) って話だって理解しようぜ



593:132人目の素数さん
22/06/25 05:32:08 CDMP7v+2.net
>>542
>私が解説するのではない!
>ツッコミを入れているんだよ、質問の形でね

>なんでもそうだが、
>実際に自分がやる十分の一以下の力で、
>ツッコミや質問は可能だ

でも、それじゃ、回答が理解できず
トンチンカンな反応でボケるしかないわな
あんた、いっつもそれやで
任意の正方行列に逆行列が存在するとか、
開集合が有界なら連続写像の像が有界とか、
定義域では値が0でない、という前提に対して
定義域の外で値が0になるならあかんとか

論理は分からん
定義は確認せん
定理は理解せん
そんなズブの素人に数学は無理
石谷茂の「泣く」4部作読んでや
あんたが落ちた穴、全部そこにあるから

594:132人目の素数さん
22/06/25 06:37:54.54 rjLBI7WT.net
>>543-544
>最初から最後までずっと圏論の話じゃアホ~wwwwwwwwww
>通りすがりはキツネにつままれたようだ
ですよね
下記の“On the history of the Riemann mapping theorem”Gray, Jeremy (1994)にあるように
ここらの”Riemann mapping theorem”議論は、圏論(1950年)以前の研究によるもの
だから、圏論は必須ではないし、逆にここらの複素関数論の”Riemann mapping theorem”が
圏論を通じて、代数幾何(と圏論の進化)のモデルになったというのが、歴史の流れでしょうね
URLリンク(ja.wikipedia.org)
一意化定理 (リーマン面)
1歴史
URLリンク(www.math.stonybrook.edu)
Gray, Jeremy (1994), “On the history of the Riemann mapping theorem”, Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento (34): 47?94, MR1295591
URLリンク(ja.wikipedia.org)
圏論
歴史
サミュエル・アイレンベルグとソーンダース・マックレーンはそれに厳密な定義が必要だと考え、1942年の論文[2]において圏や関手、自然変換といったアイデアを(その名称ではなかったが)導入し、その後1945年の「General Theory of Natural Equivalences[3]」において圏(あるいは関手、自然変換)をその名前で定義した[4]。
その後 1950年代から 1960年代にかけてこの理論は、ホモロジー代数における様々な計算の抽象的な定式化を取り込むことによって、続いて、集合論に基づく定式化では不十分だった代数幾何学の公理化を与える言葉として進展した。

595:132人目の素数さん
22/06/25 06:46:18.97 rjLBI7WT.net
>>545-546
必死の言い繕いと論点ずらし
ご苦労様ですw
繰り返すw
では聞く。>>103の図式で、
1)f(z)のリーマン面(&普遍被覆リーマン面)、
2)指数関数expのリーマン面(&普遍被覆リーマン面)
を明示せよ!w
なぜ、この単純な問いに、答えが出ない?w
 >>29より
”リーマン面の話題が出てたからちょっと復習の意味も込めて教科書読み直してみつけた話
Schottkyの定理の証明の最初の入り口
リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話”
だったでしょw

596:132人目の素数さん
22/06/25 06:49:04.19 CDMP7v+2.net
>>547
>ですよね
線形代数も位相も初歩から間違ってる素人が
何言ってもおミソだけどな

597:132人目の素数さん
22/06/25 06:53:47.06 CDMP7v+2.net
>>548
>繰り返す
>(中略)
>なぜ、この単純な問いに、答えが出ない?
元の話と全然無関係だから
分からん? だったらヤバいね
ヒト失格

598:132人目の素数さん
22/06/25 07:45:15.75 rjLBI7WT.net
>>550
必死の言い繕いと論点ずらし
ご苦労様ですw
>>なぜ、この単純な問いに、答えが出ない?
>元の話と全然無関係だから
笑える
・だれが聞いても、それって、>>548の問いに
 答えられないことの言い訳そのものじゃんww
・全然無関係? エスパー氏は(>>548より)
 ”Schottkyの定理の証明の最初の入り口
 リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話”
 と言ってますよw

599:132人目の素数さん
22/06/25 07:59:25.92 rjLBI7WT.net
>>551 補足
IUTアンチ(>>5ご参照)にして、数理論理くんとかエスパー氏と呼ばれる彼は
リーマン面で妄想したんだね(>>29>>103
つまり、>>458の黒田本 複素関数概説 共立出版(該当箇所の画像をアップしてあるよ)
を見て、>>29>>103が閃いたんだw
それは悪くない。渕野語録(下記)
「アイデアの飛翔をうながす(可能性を持つ)「数学的直観」とよばれるもので,
これは, ときには,意識的に厳密には間違っている議論すら含んでいたり,
寓話的であったりすることですらあるような,
かなり得体の知れないものである」だ
だから、>>548の簡単な問いに答えられないならば
「よく考えたら、妄想でした」と白状しなよw
数学妄想は、”アイデアの飛翔をうながす(可能性を持つ)「数学的直観」”で
全否定すべきものではない。それはそれで、価値があるよ
つづく

600:132人目の素数さん
22/06/25 07:59:52.66 rjLBI7WT.net
>>552
つづき
(参考)
”厳密性を数学と取りちがえるという勘違い”(渕野語録)
前スレ Inter-universal geometry と ABC予想 (応援スレ) 66 の400より
現代数学の系譜11 ガロア理論を読む24 スレリンク(math板:654番)
(抜粋)
あなたのまったく逆を、渕野先生が書いている
”厳密性を数学と取りちがえるという勘違い”
URLリンク(www.)アマゾン
数とは何かそして何であるべきか デデキント 訳解説 渕野昌 筑摩書房2013
「数学的直観と数学の基礎付け 訳者による解説とあとがき」
P314
(抜粋)
数学の基礎付けの研究は,数学が厳密でありさえすればよい, という価値観を確立しようとしているものではない.
これは自明のことのようにも思えるが,厳密性を数学と取りちがえるという勘違いは,
たとえば数学教育などで蔓延している可能性もあるので,
ここに明言しておく必要があるように思える
多くの数学の研究者にとっては,数学は,記号列として記述された「死んだ」数学ではなく,
思考のプロセスとしての脳髄の生理現象そのものであろう
したがって,数学はその意味での実存として数学者の生の隣り合わせにあるもの,と意識されることになるだろう
そのような「生きた」「実存としての」(existentialな)数学で問題になるのは,
アイデアの飛翔をうながす(可能性を持つ)「数学的直観」とよばれるもので,
これは, ときには,意識的に厳密には間違っている議論すら含んでいたり,
寓話的であったりすることですらあるような,
かなり得体の知れないものである
(引用終り)
以上

601:132人目の素数さん
22/06/25 09:04:13.08 iUyhy4BH.net
>>548
「103の図式」というものを見てみたが
いくつか引いてある横線の意味がよくわからない

602:132人目の素数さん
22/06/25 10:10:21.39 SQSzpSXj.net
必死wwwwwwwwwwwww

603:132人目の素数さん
22/06/25 10:13:32.72 CBmWYjYj.net
>>554
ℂ̅\̅{̅0̅}̅はℂ\{0}の普遍被覆だそうだ
実際にはℂだが🐴🦌には教えたくなくて
必死で隠蔽したいそうだ あぁ下らん

604:132人目の素数さん
22/06/25 10:21:03.21 SQSzpSXj.net
アホセタのアホレスなど読むに値しないから基本読んでないけど久々に>>548読んだらやはり数学的に意味ない事書いとるわ
アホ~
アホセタ~
お前には意味わかんないよバーカ
バイト探せ乞食

605:132人目の素数さん
22/06/25 10:27:47.95 SQSzpSXj.net
まぁ久々に読んだから答えとこか
f(z)のリーマン面はf(z)だよバーカwwwwwwwwwwwww

606:132人目の素数さん
22/06/25 10:29:44.99 CBmWYjYj.net
>>551
>リーマン面の話知ってれば
正しくは「被覆と持ち上げを知ってれば」だね
>何を確認すればいいか
exp(2πi cosh())が被覆写像であること
つまり局所同相写像であることを確認すればいい
具体的にはexp(2πi cosh())の微分が
定義域上で0でないこと
定義域は明示されてないが
像に1が含まれないことから
1


607:を値とする点は定義域に属さないと分かる >☆秒で書けて☆分で解ける話 上記のことに気づけないのは 被覆も逆関数定理も分かってない証拠 しかも背理法すら使えてない



608:132人目の素数さん
22/06/25 10:29:59.33 SQSzpSXj.net
おっとf(z)の定義域そのものね
元々正則関数f(z)なんだから何も取り替える必要ないわな
「××のリーマン面」の“××”の部分に何が来るのかなーんも意味わかってないwww
何故か?
そもそも“リーマン面”わかんないもんね~wwwwwwwwwwww

609:132人目の素数さん
22/06/25 15:02:10.88 rjLBI7WT.net
>>558 >>560
5秒で分かる話で、解答するのに、何日もかかるw
>f(z)のリーマン面はf(z)だよ
>おっとf(z)の定義域そのものね
ご苦労さん
で、>>548の問いは二つあったよ
もう一つの ”2)指数関数expのリーマン面(&普遍被覆リーマン面)”は、どうしたの?ww

610:132人目の素数さん
22/06/25 15:03:52.86 pLkV8Y+r.net
>>561
アホ~
それも答えられてるやろ~
アホ~wwwww
全然意味わかってないwwwwwwwww
能無しwwwwwwwwwwwwww

611:132人目の素数さん
22/06/25 15:52:48.87 cguf2PsU.net
>>561
>>2)指数関数expのリーマン面”は、どうしたの?
>それも答えられてるやろ〜
45,315,375,>>500で4回も答えられてますね
ついでにいうと
  h
 Δ→C/0
id↓ ↓()^n
 Δ→C\{0}
  f
idは恒等写像(Δは単連結だから普遍被覆写像)
()^nはC\{0}からC\{0}への被覆写像

612:132人目の素数さん
22/06/25 16:42:03.80 Gky1uZiR.net
中卒に数学は無理

613:132人目の素数さん
22/06/25 17:15:19.79 yb420Xkg.net
私は大卒

614:132人目の素数さん
22/06/25 18:22:38.29 rjLBI7WT.net
>>563
なんか誤魔化してるなww
1.まず
>>> 2)指数関数expのリーマン面”は、どうしたの?
>>それも答えられてるやろ〜
指数関数expのリーマン面は、単に定義域という抽象的答えでは不足だろ
もっと、具体的に、指数関数expの定義域について答えられるはずだよwww
2.さらに
(引用開始)
  h
 Δ→C/0
id↓ ↓()^n
 Δ→C\{0}
  f
idは恒等写像(Δは単連結だから普遍被覆写像)
()^nはC\{0}からC\{0}への被覆写像
(引用終り)
それはっきりhを書いた分、下記>>103より大分ましだけどw
 >>103より
(引用開始)
Δ̅ ℂ̅\̅{̅0̅}̅
↓ ↓
Δ → ℂ\{0}
ただし→がf(z)、↓は普遍被覆、X̅はXの普遍被覆(ℂ̅\̅{̅0̅}̅がくるしいがじゃあなし)
で被覆空間の一般論でf:Δ→ ℂ\{0}がf̅:Δ̅ → ℂ̅\̅{̅0̅}̅に持ち上がる、そしてΔが単連結だからΔ̅→Δは同型だからfが右側の↓を通過する事になる
これが”f(z)が0にならないのでf(z)がexp(z)を通過する原理”、この原理をきちんとこの段階で理解できていれば、その次のg(z):Δ→ℂをcosh(z)を通過させるところも同じ
(引用終り)
1)これで、C/0とC\{0}とℂ̅\̅{̅0̅}̅とℂ\{0}と
 この4つの記号について、説明して
 どれかとどれかは同じ? あるいは、全部別なの?w タイポ訂正あるんじゃない?ww
2)上記 >>563では、上側のΔが、>>>103ではΔ̅ となっているけど、どちらが正しいのかな?w
3)上記の”↓()^n”で、「()^nはC\{0}からC\{0}への被覆写像」と書いたよね
 一方、>>563では 「fが右側の↓を通過する事になる」「これが”f(z)が0にならないのでf(z)がexp(z)を通過する原理”」
 と書かれているよ。つまり、「fが右側の↓」がexp(z)と読める。”()^n=exp(z)”と解釈して良いかな?
まずは、この程度ツッコミ入れるよw

615:132人目の素数さん
22/06/25 18:56:07.08 ofTrcK2f.net
>>566
アホ~wwwwwww
exp(z)という”entirefunctionのリーマン面”なんて言ってる時点で話が辻褄あってないんだよバーカwwwwwwwwww
能無しwwwwwwwwwwwwwwwwe

616:132人目の素数さん
22/06/25 18:58:30.25 ofTrcK2f.net
>>566
一応読んでみたけど>>566メッチャクチヤwwwwwwwww
アホ~wwwwwwwwwwwwwwwww
だから“言葉のサラダ”なんだよバーカwwwwwwwww

617:132人目の素数さん
22/06/25 19:21:58.03 Wx39Nstd.net
>>566
1)C/0=C\{0}=ℂ\{0}
 ℂ̅\̅{̅0̅}̅はℂ\{0}の普遍被覆
 実際はℂだけどな

618:132人目の素数さん
22/06/25 19:25:20.80 Wx39Nstd.net
>>566
2) Δ̅はΔの普遍被覆だが、実際はΔと同じ

619:132人目の素数さん
22/06/25 19:28:59.88 Wx39Nstd.net
>>566
3)()^nはオ


620:マケ exp版は>>500参照



621:132人目の素数さん
22/06/25 21:46:13.04 Gky1uZiR.net
>>566
素直に教えて下さいってなぜ言えぬ?

622:132人目の素数さん
22/06/26 03:42:10.90 PW09Pkyx.net
このスレを長期観察すると
匿名掲示板上で知能の低い人物が
藪から棒に研究者叩きをしているのは
ほぼ全て山形大の落ちこぼれ職員個人の書き込みだと判るのが寒々しいね
大山鳴動して山形大落ちこぼれ職員1匹

623:132人目の素数さん
22/06/26 15:36:43.32 DJ9GW858.net
>>573
なんだ? 山形大ウォッチャーの荒らしかよ。
知能が低いのは、あなた
だれでも、かれでも、山形大かよw

624:132人目の素数さん
22/06/26 15:46:33.30 DJ9GW858.net
>>567-572
なんだ、それだけしか書けないのか?w
 >>567-568 は、エスパーこと数理論理君だね
>>572もかなw)
 あんた、ムチャクチャ
「exp(z)という”entirefunctionのリーマン面”なんて言ってる時点で話が辻褄あってない」
 というけれど、exp(z)の定義域が答えられないのかな?
 それ、完全に病気だよ。具体的病名は言わないけどね
 なお、exp(z)のリーマン面は >>571が正しいと思うよ
 >>569-571は、まあまあの回答かな

625:132人目の素数さん
22/06/26 16:14:23.34 MXV9oDcv.net
>>575
もう取り残されてるのお前だけだよカス
結局ガロア理論もダメ、集合論もダメ
お前が出来ることなど何一つない
何のためにこの世界にいるの?

626:132人目の素数さん
22/06/26 16:29:18.30 DJ9GW858.net
>>575 補足
でね、下記の”数学あのねのね ? 電大太郎(匿名希望)”氏で
「当時の僕は,普遍被覆空間を基本群で割るとなぜ多様体が出てくるのか
 その仕組みが全くわかりませんでした」
ってある
これ至言だね(”普遍被覆空間を基本群で割るとなぜ多様体が出てくるのか”の方な)
URLリンク(www.u.dendai.ac.jp)
数学あのねのね ?
電大太郎(匿名希望)†
Abstract
電大生の,電大生による,電大生の為の,些か冗長的なズッコケ私的数学
啓蒙入門.本雑記より格式的高く本格的な数学の案内書が読みたい人は [1] を
要参照してください.
P1
1.1 質問は学部生の特権?
 僕が学部2年生のときはM地秀樹先生(現・大阪大学)の指導のもとで「ガロ
アの夢」(cf.[2])を読んでいました.この本はとても面白い本で視覚的にガロア理
論を捉える数学的記述が書いてあります.当時の僕は,普遍被覆空間を基本群で
割るとなぜ多様体が出てくるのかその仕組みが全くわかりませんでした.オフィ
スアワーを無視して毎日のように同じ質問を繰り返して 100 回ぐらいM地先生に
お世話になっていた記憶があります.
(引用終り)
つづく

627:132人目の素数さん
22/06/26 16:29:44.97 DJ9GW858.net
>>577
つづき
ここ、下記の川平にあるよ
P2 ”定理 7.1 (一意化定理) 任意のリーマン面は,次のような形のリーマン面 R と等角同型である:
 R = X/Γ
 ただし X = C?, C, もしくは D であり,Γ は P SL(2, C) のある離散部分群.”
(補足:C?はリーマン球面、Cは複素平面、Dは領域(連結開集合)(Dとかは、下記の23 年版のP4 1.2 リーマン面の具体例))
 ここで、X/Γと部分群の商 /Γ にご注目
P6 に、普遍被覆面の具体例として、トーラスで説明している(群で割る話)
 ”トーラスの普遍被覆は平面と同相(なリーマン面)と
 なる.下図はトーラスの基本群を平面まで「ほどいて」いく過程を表現したもの.いかなるリーマン
 面も,原理的にはこのように「ほどいて」単連結なリーマン面にすることができる.”と
P13 タイヒミュラー空間 9.2 写像の持ち上げ で下記な
 ”リーマン面 S とその普遍被覆 f~: S~ → X (ただし X = C?, C または D)”に関する持ち上げを論じている
この川平と、>>569-571及び >>566を対比してみなよ
当然、川平が正しくて、
川平と整合しない部分は、全部 間違いですよ
URLリンク(www1.econ.hit-u.ac.jp)
複素解析特論I(つづき)
タイヒミュラー空間と複素力学系への応用
川平 友規
平成 24 年 9 月 21 日
7 リーマン面の基本群・普遍被覆面
URLリンク(www1.econ.hit-u.ac.jp)
複素解析特論I
タイヒミュラー空間と複素力学系への応用
川平 友規
平成 23 年 6 月 14 日
(引用終り)
以上

628:132人目の素数さん
22/06/26 16:34:09.68 P59jXpES.net
>>575
中卒君の煽り芸もマンネリで飽きてきたな
群論もダメ 整列順序もダメ 位相もダメ
スリーアウトだな 数学諦めたら?

629:132人目の素数さん
22/06/26 16:45:05.43 P59jXpES.net
>>578
じゃ質問
1. C-{0}をX/Γとして表したときのXとΓを示せ
2. C-{0,1}をX/Γとして表したときのXとΓを示せ
1はビギナーズラックで当たるかもしれんけど
2は到底無理だろうな

630:132人目の素数さん
22/06/26 16:54:16.95 Vc+87Px7.net
>>578
まぁアホはこんな事始めて知ったんやろ
もちろん数学科卒なら常識
当然今までの議論は全部整合してる
そんな事も分からん役立たず
誰か他人の役に立った事があるかね?能無し君?
何のために生まれてきた?

631:132人目の素数さん
22/06/26 18:39:50.13 DJ9GW858.net
>>578 補足
下記の吉冨 賢太郎を併せて読むと良い
>>632より再録)
URLリンク(www2.meijo-u.ac.jp)
 第 15 回 整数論サマースクール 報告集, pp.1-13
 リーマン面と代数曲線 吉冨 賢太郎
P4
定理 1.5. 被覆多様体 S’ーf’→ S において S があるリーマン面 R の基底空間のとき, S’ にも
f’ が解析写像となるようなリーマン面の構造が入り, リーマン面 R’ の基底空間となる.
このとき, R’ を R の被覆リーマン面という. 被覆多様体の同型や自己同型群などは位相
写像のかわりに解析写像として同様に定義される. このようにして (閉) リーマン面を分類
するには単連結リーマン面を考え, その自己同型群の不連続部分群の共役類を求め, その代
表系に対応するリーマン面を考えればよいことがわかる.
而して, リーマン面は以下のように分類される.
定理 1.6. リーマン面 R は以下のいずれかと同型である. それぞれ, 普遍被覆リーマン面
が 楕円型, 放物型, 双曲型であるという.
(1) 複素球面 P1(C)
(2) 複素平面 C を被覆リーマン面とする以下のもの.
 (2-1) C = P1(C) \ {∞}
 (2-2) C \ {0} = P1(C) \ {0, ∞}
 (2-3) C/L, L は 2 次元格子群 Zω1 + Zω2, ω1/ω2 ∈ H.
(3) 上半平面 H を合同部分群でわったもの.
注: (2-3) は楕円曲線である.
注: (3) はモジュラー曲線などがその典型的な例である.
上の分類から, 閉リーマン面となるのは, リーマン球面か, 楕円曲線, もしくは, 上半平面
の一次分数変換群の離散部分群による商空間 (のコンパクト化) となる. これらの基本領域
を考えると, 最初の 2 つについては明白であり, 楕円曲線の場合は格子の内部と接する辺が
基本領域となる. この場合, 後述の標準切断はこの 2 本の辺の像である閉曲線によるもので
ある. 一方, (3) の場合も基本領域は 2n 角形になることがわかり, 基本群の元は, この基本
領域 ? の各辺をとなりあう基本領域の接しない 1 辺に写すただ


632:一つの変換によって生成さ れることがわかる. (引用終り) 以上



633:132人目の素数さん
22/06/26 18:45:48.01 qQa0jY/Q.net
常識じゃボケ

634:132人目の素数さん
22/06/26 19:03:00 AQBdtpX5.net
上から目線だけはブレない中卒w

635:132人目の素数さん
22/06/26 19:54:04.96 D/MYUrgt.net
>>582
コピペはできても、>>580の質問には答えられないか
1. C-{0}をX/Γとして表したときのXとΓを示せ
→C/Z
2. C-{0,1}をX/Γとして表したときのXとΓを示せ
→D/F2
F2は生成元が2個の自由群
ちなみにZは生成元が1個の自由群

636:132人目の素数さん
22/06/26 20:13:33.69 DJ9GW858.net
>>566 追加
(引用開始)
Δ̅ ℂ̅\̅{̅0̅}̅
↓ ↓
Δ → ℂ\{0}
ただし→がf(z)、↓は普遍被覆、X̅はXの普遍被覆(ℂ̅\̅{̅0̅}̅がくるしいがじゃあなし)
で被覆空間の一般論でf:Δ→ ℂ\{0}がf̅:Δ̅ → ℂ̅\̅{̅0̅}̅に持ち上がる、
(引用終り)
これ、持ち上げをいうならば、むしろ
下記の平井広志の「位相幾何:被覆空間」
定義 7.1 (リフト)と定理 7.2、図 4: パスのリフト
じゃね? (下記の三角の図な)
 >>103は、大外し じゃね?w
(参考)
URLリンク(www.misojiro.t.u-tokyo.ac.jp)
R2 幾何数理工学
位相幾何: 被覆空間 [ノート][きれいなノートupdate]
URLリンク(www.misojiro.t.u-tokyo.ac.jp)
幾何数理工学ノート
位相幾何:被覆空間
平井広志
東京大学工学部 計数工学科 数理情報工学コース
東京大学大学院 情報理工学系研究科 数理情報学専攻
hirai@mist.i.u-tokyo.ac.jp
協力:池田基樹(数理情報学専攻 D1)
7 被覆空間
P1
定義 7.1 (リフト). p : E → X を被覆写像とする.
f : Y → X のリフト def ⇔ f~ : Y → E, p *f~ = f.
次の図式が可換になるような f~ が f のリフトである:
     E 
  f~ /|
  /  ↓p
Y -→ X
  f
定理 7.2. p : E → X を被覆写像とする.f : [0, 1] → X をパス,x0 := f(0) とおく.x~0 ∈ p-1(x0) に対
して f のリフト f~ : [0, 1] → E, f~(0) = x~0 が一意に存在する.
P3
図 4: パスのリフト.
(引用終り)
以上

637:132人目の素数さん
22/06/26 20:32:02.84 uz9M+l09.net
そう、これがlift
ここまで明確に図式が書かれてるのに知能指数の低さで同じものである事が認識できないチンパンジー
もはや人類である事が信じられんレベルの知能の低さ
マジチンパンジー

638:132人目の素数さん
22/06/26 22:57:41.77 DJ9GW858.net
>>587
あんた、数学無理
 >>586より
Δ̅ ℂ̅\̅{̅0̅}̅
↓ ↓
Δ → ℂ\{0}
ただし→がf(z)、↓は普遍被覆、X̅はXの普遍被覆(ℂ̅\̅{̅0̅}̅がくるしいがじゃあなし)
で被覆空間の一般論でf:Δ→ ℂ\{0}がf̅:Δ̅ → ℂ̅\̅{̅0̅}̅に持ち上がる、
(引用終り)
これと
位相幾何:被覆空間 平井広志 東京大学 より
定義 7.1 (リフト). p : E → X を被覆写像とする.
f : Y → X のリフト def ⇔ f~ : Y → E, p *f~ = f.
次の図式が可換になるような f~ が f のリフトである:
     E 
  f~ /|
  /  ↓p
Y -→ X
  f
定理 7.2. p : E → X を被覆写像とする.f : [0, 1] → X をパス,x0 := f(0) とおく.x~0 ∈ p-1(x0) に対
して f のリフト f~ : [0, 1] → E, f~(0) = x~0 が一意に存在する.
(引用終り)
両者の比較で、前者は普遍被覆で、後者は単に被覆空間
また、前者はΔの普遍被覆とか、ワケワカらんことを書いているのに対して、平井広志 東京大学の方はアホなこと書いてないのでスッキリ
全然違うwww

639:132人目の素数さん
22/06/26 23:30:47.59 M4aRWjeZ.net
>>588
他のみんなは全員わかってる
ひとりで騒いでアホレス晒しトレ能無し

640:132人目の素数さん
22/06/26 23:50:49.67 DJ9GW858.net
>>588 追加
で、被覆空間とか、リフトとか、関係ないんだ
黒田の補助定理 >>458で説明するよ
1)黒田の補助定理:
 <オリジナル>(>>407より)
 ”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
 そこでf(z)≠0であるとすれば、Dで
 f(z)=e^h(z)=(g(z))^k (kは正の整数)
 をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
 とある。この前半のf(z)=e^h(z)のみ考える
2)この f(z)=e^h(z)を図式にすると
     E 
  h /|
  /  ↓e^z
D -→ X
  f
 となる
3)ここで、Dが定義域で、Xは値域です。Xは、リーマン面(定義域)ではない
4)黒田の補助定理は、f(z)≠0�


641:ニなる値域が、キーなのです 5)実際、例えば f(z)=0、f(z)≠-1と問題を変えてみよう  このとき、e^zのままでは、まずい(f(z)=0にできない)  しかし、e^z→e^z -1と取り直せば、黒田の補助定理の類似が成立する  (e^z -1ならば、z=0のときf(z)=0とできて、一方 e^z≠0だから、e^z -1≠-1 成立。あとは、黒田の補助定理と同じ) 6)さて、この簡単な問題(上記5)で、二つの関数 e^zとe^z -1 とは、定義域は同じだ (複素平面全体C)  従って、リーマン面は両者で同じで(単連結でもある)、リーマン面やその被覆では二つの関数は区別できないのです 7)また、値域Xについては、単連結に限らない。実際、黒田本では、f(z)≠0,1より 環状領域を導いている(>>458ご参照) 8)要するに、黒田の補助定理の問題は、値域の問題あって、リーマン面(定義域)被覆空間論やリフトを使う必要がないのです  (関数の値域の問題として解くべし) 以上



642:132人目の素数さん
22/06/27 06:24:51.56 JUz7D3+h.net
>>588
エスパー氏の図式は
Yについては586の拡張というか一般化
普遍被覆については逆に586の特殊化
どっちも問題ないが素人は何故発☆してる?

643:132人目の素数さん
22/06/27 06:36:49.13 JUz7D3+h.net
>>590
>被覆空間とか、リフトとか、関係ないんだ
いや、そのものズバリじゃん
f(z)=e^h(z)
     E 
  h /|
  /  ↓e^z
D -→ X
  f

e^()が被覆写像
hがfのリフト
じゃん
あんたいったいどこ見てんの?
ついでにパスのリフトを定義域全体のリフトにする場合
定義域が単連結なら十分じゃん
起点〜終点間のどんなパスもホモトープだから
あんた、読みもせずにコピペしてんの?
ダメだよ コピペする前に読んで考えなくちゃ

644:132人目の素数さん
22/06/27 06:46:51 JUz7D3+h.net
素人君が必死にエスパー氏の上に
立とうとしてるみたいだけど無理よ
大学1年と大学院生じゃレベルが2段階違うから
高校野球とメジャーリーグくらい違う

645:132人目の素数さん
22/06/27 06:52:02 JUz7D3+h.net
素人君は尊大な態度を改めた方がいいな
反感買うだけで大損してるから
むしろ「なんにもわからないんですぅ」って
女子高生ぶりっ子した方が得じゃん
アタマ悪いな

646:132人目の素数さん
22/06/27 07:28:35.52 RQ7T3CPl.net
>>591-592
ご苦労さん
あんたは、エスパー氏より、数学の力は大分上だね
エスパー氏は、この件で数学的な発言は皆無に近い
 >>29>>103の張本人なのにね
さて、黒田の補助定理の図式(>>590
  f(z)=e^h(z)で
     E 
  h /|
  /  ↓e^z
D -→ X
  f
ここで、定義域はDであって、リーマン面とは関数の定義域とすれば
問題になっているのは、むしろ値域 Xのところ
値域 Xが、f(z)≠0だとかf(z)≠0,1だとか、あるいは>>590の5)のように f(z)=0、f(z)≠-1 という設定だとか
値域 Xによって、関数e^zが使えるかどうか? どういう関数なら使えるか? が決まる(>>590
なので、リーマン面の被覆論や普遍被覆論から>>103を妄想したのは悪くないが、
あくまで>>103自身はエスパー氏の妄想ですね(リーマン面の被覆理論だと見たんだね。でも違った)

647:132人目の素数さん
22/06/27 09:40:00.96 SON4Of2q.net
>>595
エスパー氏は親切ではないが
言ってることは間違ってない
素人君は分かった風な口を利くけど
初心者レベルで間違ってる
要するに、エスパー氏より、数学の力は全然下

648:132人目の素数さん
22/06/27 13:10:45 oMjj+ob4.net
>>595
>リーマン面の被覆論や普遍被覆論
何それ
その理論の用語の定義、公理と主要な定理
示してくれる?

649:132人目の素数さん
22/06/27 21:14:05 RQ7T3CPl.net
>>593
>大学1年と大学院生じゃレベルが2段階違うから
>高校野球とメジャーリーグくらい違う

同感だな
数学科のトップレベルについては、


650:そう思う 下記数学セミナーの河東泰之氏「私は1975年、中学1年生の夏から本誌を読んでいた」 (父が買ってきた数学セミナーを)「私はこんなに面白いものがあったのかというくらい喜んで、熱中して読みふけった」 とある また、いまは開成の生徒らしいが(TVに出ていた)、 下記高橋洋翔(ひろと)君などは、その候補生だろう だが、同じ数学科でも、 落ちこぼれとトップとは、2段階も3段階以上もちがう 高校野球とメジャーリーグくらい違う いや、プロ将棋棋士と、 素人へぼ将棋くらいの違いがあるかもね (参考) https://www.nippyo.co.jp/shop/magazine/8781.html 数学セミナー  2022年5月号 『数学セミナー』を読んでいた頃,そして数理物理学との出会い ……河東泰之 8 https://www.sankei.com/article/20181124-HHDCNLH2GFM5VBVWTX5MMS7NKY/ 産経 「夢は数学のノーベル賞」 数検1級に11歳で最年少合格・高橋洋翔君 2018/11/24 07:07  ■快挙の秘訣は家庭…弟2人もすごい  世田谷区の小学5年、高橋洋翔(ひろと)君(11)が、公益財団法人「日本数学検定協会」の実用数学技能検定(数検)1級の最年少合格記録を大きく塗り替えた。自宅で取材に応じてくれたスーパー小学生は、すでに2歳で数学への興味を抱いたことや、家庭内で切磋琢磨(せっさたくま)して数学力を高めたことなどを語った。快挙を果たしても数学への思いは尽きず、「『数学のノーベル賞』といわれるフィールズ賞を取りたい」と、特大級の夢を胸に抱いている。(斎藤有美) つづく



651:132人目の素数さん
22/06/27 21:14:24 RQ7T3CPl.net
>>598
つづき

 高橋君は約4年間、大学程度・一般レベルとされる1級を受け続け、今年10月下旬に行われた試験で、合格率9・4%の難関を突破。これまでの最年少合格者は中2(13歳)だった。「たくさん勉強した。合格できてとてもうれしかった」と振り返る。

 2歳のとき、立体パズルで遊ぶうちに数学に興味を持ち、3歳になるころには素因数分解(例えば30=2×3×5)を暗算で解けるようになった。小1(7歳)で高2程度の数検2級、小2(同)で高3程度の数検準1級にそれぞれ最年少で合格してきた。数学の魅力や楽しさについては、「たくさん考えて、解けたときに達成感がある」。

 高橋君は3人兄弟の長男。実は、次男の小学2年、海翔(かいと)君(7)も数検2級の1次試験に合格、三男の湊翔(みなと)君(5)も小4レベルの数検8級に合格しているというから驚きだ。弟たちは洋翔君の影響を受けており、兄弟間で数学の問題を出し合うなどしているという。

 特徴的なのは本棚だった。大学で使われるような微分積分の方程式などの数学書が並ぶ。さらに、リビングには特注のホワイトボードが壁一面を覆っており、取材時には大学レベルの微分方程式がずらりと書かれていた。

 将来の夢は数学者で、フィールズ賞を取る以外にも、「新しい定理や予想を打ち立てたい。後世の数学をより発展させたい」と、夢は尽きない。

 すでに数学者との「コラボ」も行っており、飯高(いいたか)茂・学習院大学名誉教授と取り組んだ「数の性質」についての共同研究の成果を盛り込んだ書籍も出版されている。「共同研究はすごく楽しい。先生を尊敬しています」と生き生きと話した。
(引用終り)
以上


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch