22/06/20 23:48:37.30 yrGlRelt.net
>>433-435
>逆関数の問題なんですか?
逆関数という切り口で考えられるということだね
>>関数f(z)はz平面の開円板D:|z|<R で正則で
>は元のままなのは何故ですか?
まずは、これで考えようということ
黒田本というお手本があるから
>被覆は忘れていいんですか?
殆ど忘れて良いと思うよ
例えば、>>429 に示したように
f(a)=0 (aは、円板D内の点)であるとして
十分大きな正実数Mを使って
f(z)+Mとすることで、f(z)+M≠0と出来て、黒田本の補助定理が適用できる
さて、ここで、関数f(z)と関数f(z)+Mと、この二つの普遍被覆は同じだろ
だから、この二つは普遍被覆と持ち上げ論では、両者は区別できない
しかし、f(z)とf(z)+Mとは、片方は黒田本の補助定理が適用できないし、もう一方はできるという区別がある
ここでは、普遍被覆と持ち上げ論は、関係ないです
>微分が0の点があってもいい?
”微分が0”うんぬんは、重要だが
例えば、ある関数f(z)のリーマン面で、微分f’(z)=0の有無
例えば、f(z)=g(h(z))で、微分g’(z)=0の有無
これで、普遍被覆にどんな違いが出るのか?
普遍被覆に違いが出るならば、”微分が0”うんぬんを、普遍被覆を使って論じることができる
しかし、普遍被覆に違いが出ないならば、普遍被覆を使って”微分が0”うんぬんを論じることは、できない