22/06/20 00:01:28.89 yrGlRelt.net
>>417 補足
なんか、完全にこの手の逆関数の問題を
勘違いしている人たちが、いるねw
黒田の補助定理の一般化:
<オリジナル>(>>407より)
”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば、Dで
f(z)=e^h(z)=(g(z))^k (kは正の整数)
をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
↓
<一般化その1>(>>408より)
”関数f(z)はz平面の開円板D:|z|<R で正則で
f(z)=g(h(z)) で、gは正則関数であるという条件下で、h(z)は正則関数か?”
とできる(条件f(z)≠0は抜いた。h(z)が”Dでは正則”も抜いた。なお、もとはg(z)=e^zな)
<一般化その2>(>>412より)
”関数f(z)はz平面の開円板D:|z|<R で正則であって
f(a)=0 (aは、円板D内の点)であるとする。Dで
f(z)=g(h(z))
をみたすDでは正則な関数h(z)が存在する。ここで、h(0)は、値f(0)のみで定まる”
とできる(条件 f(a)=0 (aは、円板D内の点)を規定した)
・ここで、<一般化その2>については、<一般化その1>で、条件f(z)≠0は抜いたことを、強調しただけ
その2では、関数gに指数関数e^zは、そのままは使えないよ。それだけのこと
・<一般化その2>で指数関数を使いたければ、十分大きな正実数Mを使って、g(z)=e^z -Mと置けば
f(z)=g(h(z))=e^h(z) -M から、f(z)+M=e^h(z)となる式を得る
f(z)は、Dで正則だから、発散せず、つまり有限に止まるので、max|f(z)|<MなるMを取れば良い
これで Dでf(z)+M≠0だから、黒田の補助定理から、h(z)はDで正則となる
・そりゃ、指数関数e^zをそのまま、適用するのは無理ですww
f(a)=0ですからw
以上