22/06/19 21:56:30.53 ieI9+YAp.net
わかってないのをわかってると言い張って部分点とかお情けの単位とか乞食してきてそういうので乗り切って大学卒業まで誤魔化し切ったようなダメっぽさに満ち満ちてる。
468:132人目の素数さん
22/06/20 00:01:28.89 yrGlRelt.net
>>417 補足
なんか、完全にこの手の逆関数の問題を
勘違いしている人たちが、いるねw
黒田の補助定理の一般化:
<オリジナル>(>>407より)
”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば、Dで
f(z)=e^h(z)=(g(z))^k (kは正の整数)
をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
↓
<一般化その1>(>>408より)
”関数f(z)はz平面の開円板D:|z|<R で正則で
f(z)=g(h(z)) で、gは正則関数であるという条件下で、h(z)は正則関数か?”
とできる(条件f(z)≠0は抜いた。h(z)が”Dでは正則”も抜いた。なお、もとはg(z)=e^zな)
<一般化その2>(>>412より)
”関数f(z)はz平面の開円板D:|z|<R で正則であって
f(a)=0 (aは、円板D内の点)であるとする。Dで
f(z)=g(h(z))
をみたすDでは正則な関数h(z)が存在する。ここで、h(0)は、値f(0)のみで定まる”
とできる(条件 f(a)=0 (aは、円板D内の点)を規定した)
・ここで、<一般化その2>については、<一般化その1>で、条件f(z)≠0は抜いたことを、強調しただけ
その2では、関数gに指数関数e^zは、そのままは使えないよ。それだけのこと
・<一般化その2>で指数関数を使いたければ、十分大きな正実数Mを使って、g(z)=e^z -Mと置けば
f(z)=g(h(z))=e^h(z) -M から、f(z)+M=e^h(z)となる式を得る
f(z)は、Dで正則だから、発散せず、つまり有限に止まるので、max|f(z)|<MなるMを取れば良い
これで Dでf(z)+M≠0だから、黒田の補助定理から、h(z)はDで正則となる
・そりゃ、指数関数e^zをそのまま、適用するのは無理ですww
f(a)=0ですからw
以上
469:132人目の素数さん
22/06/20 04:28:55.60 2d/zLory.net
URLリンク(hidamarikokoro.jp)
470:132人目の素数さん
22/06/20 04:48:13 EXsgcbaO.net
>>427
本気でそう書いているのだろうか?馬鹿にするのもいい加減にしろ。
私が考案した方法により、奇数の調和数、双子素数、Goldbach予想を完全に解決した。
完全に解決しているから、「endorsementだ。」と言う人がいるのだが?
471:132人目の素数さん
22/06/20 07:34:27.08 yrGlRelt.net
>>429 補足
”<一般化その1>(>>408より)
”関数f(z)はz平面の開円板D:|z|<R で正則で
f(z)=g(h(z)) で、gは正則関数であるという条件下で、h(z)は正則関数か?”
とできる(条件f(z)≠0は抜いた。h(z)が”Dでは正則”も抜いた。なお、もとはg(z)=e^zな)”
(引用終り)
ついでに補足する
ここで、「h(z)が”Dでは正則”も抜いた」の意図は、h(z)は一般の解析関数であって、例えばD内に極があっても可とした
だけど、結局は、内に極などがあると、関数f(z)がD内で正則(極などを持たない)に反する気はしている
(h(z)の極を、関数gで消せれば良いけど、どうかな?)
でも、ここで言いたいのは、普遍被覆と持ち上げ論では大したことは言えないんじゃないか?ってこと
要するに、普遍被覆と持ち上げ論の良いところは、細かい話を省いて大雑把で大局的な見方ができること
逆に、黒田の補助定理(逆関数問題)みたいな細かい話(>>429)には、普遍被覆と持ち上げ論を使っても、言えることは少ないと思う
(例えば、URLリンク(www2.meijo-u.ac.jp)
第 15 回 整数論サマースクール 報告集, pp.1-13
リーマン面と代数曲線 吉冨 賢太郎?
P2「リーマン球面の場合は g = 0, 楕円曲線は g = 1 である.」とあるように、
話をリーマン球面(C∪∞)などまで広げれば、極は扱えるが、
今の”関数f(z)がD内で正則(極などを持たない)”には、関係ない)
実際、キーワード:逆関数 普遍被覆 持ち上げ
で検索してみなよ
逆関数について、普遍被覆と持ち上げ論で説明している文献は、無いよ
472:132人目の素数さん
22/06/20 09:07:16.29 OFhNW9iy.net
>>429
>なんか、完全にこの手の逆関数の問題を
>勘違いしている人たちが、いるね
逆関数の問題なんですか?
473:132人目の素数さん
22/06/20 09:10:41.31 OFhNW9iy.net
>>429
一般化といいながら
>関数f(z)はz平面の開円板D:|z|<R で正則で
は元のままなのは何故ですか?
474:132人目の素数さん
22/06/20 09:17:35.08 OFhNW9iy.net
>>429
あと
>gは正則関数であるという条件下
しかないですけどいいんですか?
被覆は忘れていいんですか?
微分が0の点があってもいい?
逆関数の問題なんですよね?
475:132人目の素数さん
22/06/20 23:48:37.30 yrGlRelt.net
>>433-435
>逆関数の問題なんですか?
逆関数という切り口で考えられるということだね
>>関数f(z)はz平面の開円板D:|z|<R で正則で
>は元のままなのは何故ですか?
まずは、これで考えようということ
黒田本というお手本があるから
>被覆は忘れていいんですか?
殆ど忘れて良いと思うよ
例えば、>>429 に示したように
f(a)=0 (aは、円板D内の点)であるとして
十分大きな正実数Mを使って
f(z)+Mとすることで、f(z)+M≠0と出来て、黒田本の補助定理が適用できる
さて、ここで、関数f(z)と関数f(z)+Mと、この二つの普遍被覆は同じだろ
だから、この二つは普遍被覆と持ち上げ論では、両者は区別できない
しかし、f(z)とf(z)+Mとは、片方は黒田本の補助定理が適用できないし、もう一方はできるという区別がある
ここでは、普遍被覆と持ち上げ論は、関係ないです
>微分が0の点があってもいい?
”微分が0”うんぬんは、重要だが
例えば、ある関数f(z)のリーマン面で、微分f’(z)=0の有無
例えば、f(z)=g(h(z))で、微分g’(z)=0の有無
これで、普遍被覆にどんな違いが出るのか?
普遍被覆に違いが出るならば、”微分が0”うんぬんを、普遍被覆を使って論じることができる
しかし、普遍被覆に違いが出ないならば、普遍被覆を使って”微分が0”うんぬんを論じることは、できない
476:132人目の素数さん
22/06/21 06:47:54.03 SjzjhaLu.net
>>436
>>逆関数の問題なんですか?
> 逆関数という切り口で考えられる
というか、実態は
逆関数という切り口でしか考えられない
のではないですか?
477:132人目の素数さん
22/06/21 06:51:15.15 SjzjhaLu.net
>>436
>>>関数f(z)はz平面の開円板D:|z|<R で正則で
>>は元のままなのは何故ですか?
>まずは、これで考えようということ
>黒田本というお手本があるから
残念ながら大して一般性ないですね
478:132人目の素数さん
22/06/21 06:54:07.67 SjzjhaLu.net
>>436
>>被覆は忘れていいんですか?
>殆ど忘れて良い
全く忘れてませんか?
要するに被覆が理解できなかった
ってことですよね?
479:132人目の素数さん
22/06/21 07:05:25.81 SjzjhaLu.net
>>436
>例えば、>>429 に示したように
それ、間違ってますよね?
>f(z)は、Dで正則だから、発散せず、
>つまり有限に止まるので、
これ、嘘ですよね?
Dは閉円盤じゃなくて開円盤ですよ
ということで
>max|f(z)|<MなるMを取れば良い
>これで Dでf(z)+M≠0だから、
とは言えませんね
大学1年の微積分からやり直した方がいいですよ
開集合と閉集合の違いは基本ですから
480:132人目の素数さん
22/06/21 07:40:47.84 +ODGlfju.net
>>437
>実態は
>逆関数という切り口でしか考えられない
>のではないですか?
実態は、そうでしょう
しかし、指数関数の逆(対数)は、よく知られているように、多価になります
そこを、うまく処理しているのが、黒田の補助定理の証明ですね
”指数関数の逆”(対数)を、表に出さずに処理している
あと、”微分が0”うんぬんは、単なる逆関数で可微分を考えなければ簡単です
でも、f(z)=g(h(z)) で、g(z)の逆g-1(z)を考えたとき、g(z)の”微分が0”の部分を使ってしまうと
f(z)がDで正則を壊してしまう可能性がある(h(z)との組合わせでうまく処理できれば良いが、よく分からない)
なので、g(z)の”微分が0”の部分は、避けた方が無難
(なお、複素平面全体ではどこかで”微分が0”が普通ですよね。”微分が0”の部分を使わなければ良いのです)
>>438
良いんじゃね?
そもそも、>>29 で、単位円Δだった。これを黒田 補助定理の開円板D:|z|<R に戻した(>>429)
そして、指数関数 f(z)=e^h(z) としているところを
f(z)=g(h(z)) とした
こうすることで、>>103の普遍被覆と持ち上げ論の問題点が、見えるようにした
つまり、 >>103の普遍被覆と持ち上げ論って、一般の f(z)=g(h(z)) で成り立ってますか? ってこと
もっと言えば、>>103の普遍被覆と持ち上げ論の部分って、
単に 指数関数 f(z)=e^h(z) に特化して語っているだけじゃない?
481:132人目の素数さん
22/06/21 07:41:53.46 +ODGlfju.net
>>439
>要するに被覆が理解できなかった
それ、あなた
一変数複素関数論の道具箱には、過去連綿とその時代の数学者達が開発してきた道具がある
被覆とか普遍被覆もその道具の一つでしょ?
で、各道具には、向き不向きがある
いまの、黒田の補助定理とその後の定理7.10 (ショットキ(Schotky))
を扱うとき、被覆とか普遍被覆はあまり向いていないんじゃない?
大袈裟なわりに、小回りが利かないとか
この前、TVでもやっていたけど、巨大重機で生卵をつかむ話
面白かった。下記のyoutubeは、類似な。
被覆とか普遍被覆で、黒田本やったら、良いことあるの?
(参考)
URLリンク(www.youtube.com)
【神技】巨大重機で生卵をつかんで割る?目玉焼きを作ってみよう!【大割機で料理】
3,226 回視聴 2021/02/07 握力230トンの大割機で繊細な生卵をつかんで割ってフライパンへ落とすことができるのか?
シコクパンク
482:132人目の素数さん
22/06/21 08:01:24.90 +ODGlfju.net
>>440
>>これで Dでf(z)+M≠0だから、
>とは言えませんね
なるほど
しかし、Dでf(z)+M≠0場合もあるということは認めるでしょ
特に、Dに縁を追加して、閉円板で正則の場合とか
で、Dの縁で特異点(極とか)がある場合ね
黒田補助定理の「開円板D:|z|<R」(>>429)
で、Rを少しだけ小さく取るとか
例えば、R→R-ε (εは適当な正実数)
とすれば、閉円板D:|z|<=R-εで正則にできるよ
実質は、それで十分でしょ?
もとの黒田補助定理の「開円板D:|z|<R」で、
|z|=Rのどこかに特異点(極とか)がある場合か
面白そうだけどね
興味のある人考えてw
483:132人目の素数さん
22/06/21 08:34:10.26 SjzjhaLu.net
>>436
>ここで、関数f(z)と関数f(z)+Mと、
>この二つの普遍被覆は同じだろ
言葉の使い方が間違ってますね
被覆する対象は関数ではなく集合ですよ
484:132人目の素数さん
22/06/21 08:44:22.19 SjzjhaLu.net
>>436
>”微分が0”うんぬんは、重要だが
>例えば、ある関数f(z)のリーマン面で、
>微分f’(z)=0の有無
>例えば、f(z)=g(h(z))で、
>微分g’(z)=0の有無
>これで、普遍被覆にどんな違いが出るのか?
やっぱり被覆が全く分かってませんね
この場合、gがfの値域の被覆写像であることが重要
gの微分が0でないというのは被覆写像の条件
局所同相じゃなくちゃいけませんから
fとかhとかの微分については一切述べてませんよ
485:132人目の素数さん
22/06/21 09:00:24.82 SjzjhaLu.net
>>441
>”微分が0”うんぬんは、単なる逆関数で
>可微分を考えなければ簡単です
え?正則、つまり可微分ですよね?
>でも、f(z)=g(h(z)) で、
>g(z)の逆g^-1(z)を考えたとき、
>g(z)の”微分が0”の部分を使ってしまうと
>f(z)がDで正則を壊してしまう可能性がある
最後の行、おかしいですね
「g’(z)=0だと正則な逆関数が存在しない」
ならわかりますが
>なので、g(z)の”微分が0”の部分は、避けた方が無難
無難じゃなくて、避けなくちゃいけません
>なお、複素平面全体ではどこかで”微分が0”が普通ですよね。
普通、の意味がわかりませんが、
「複素平面全体で微分が0でない正則関数」
は実在します expがいい例ですね
486:132人目の素数さん
22/06/21 10:54:28.34 CIdAAnNM.net
>>443
>>>これで Dでf(z)+M≠0だから、
>>とは言えませんね
>なるほど
>しかし、Dでf(z)+M≠0場合もある
>ということは認めるでしょ
そうでない場合を排除できてないなら無意味だけどね
実は開円盤から複素平面全体への正則写像はないけどね
それはもっと深いレベルだね
487:132人目の素数さん
22/06/21 11:05:09.50 CIdAAnNM.net
>>443
>Dの縁で特異点(極とか)がある場合ね
1個とかたかだか有限個とか考えてるでしょ?
境界円上にビッシリ無数に存在する場合があるよ
「自然境界」ってヤツな
488:132人目の素数さん
22/06/21 11:47:35.69 rhN7CYws.net
またアホな事言い出してるわ
こういうのが望月先生がダメって言ってる“わかったきになってるアホ信者”やろ
アホ信者底抜けにアホ
489:132人目の素数さん
22/06/21 12:22:34.7
490:4 ID:+77CQbwW.net
491:132人目の素数さん
22/06/21 12:28:54.85 2+SzTVHN.net
お前はもう死んでいる
492:132人目の素数さん
22/06/21 13:03:09.49 +77CQbwW.net
>>451
♪オラは死んじまっただ〜
493:132人目の素数さん
22/06/21 18:23:03.87 WjAdsX/m.net
folk crusaders
494:132人目の素数さん
22/06/21 20:20:21.04 +ODGlfju.net
>>449
>こういうのが望月先生がダメって言ってる“わかったきになってるアホ信者”やろ
なんだかね
前半「望月先生がダメって言ってる」
後半「“わかったきになってるアホ信者”」
全く整合していない
望月先生がダメと、
”信者”とが、
不整合
ことばのサラダ状態
エスパーしてくれ
と言われそうだが
エスパーしないよw
495:132人目の素数さん
22/06/21 20:48:57.95 +ODGlfju.net
>>443 補足
なんか、ワケワカのぐだぐだが、なんか言っているな
言いたいことは
・少し小さいDを閉円板とすることで、D内で正則だから有限に止まるので、
max|f(z)|<MなるMを取って>>429
・f(z)+M を作れば、0<|f(z)+M| で、f(z)+M ≠0とできて、黒田の補助定理が使える
・さらに、f(z)+M+1 を作れば、1<|f(z)+M+1|で、f(z)+M+1 ≠0,1とできて、定理7.10 (ショットキ(Schottky))>>398が使える
だから、f(z)が≠0とか≠0,1の条件を満たさないときでも
少し小さいDを閉円板として、f(z)+Mやf(z)+M+1を作って
黒田の補助定理や定理7.10 (ショットキ(Schottky))を適用する手もあるってことですよ
496:132人目の素数さん
22/06/21 20:56:14.56 K++487wv.net
あんたのいいたいことはわかった
497:132人目の素数さん
22/06/21 21:32:21.96 FB0kW+oV.net
>>455
最初からf(z)≠aって条件にすればよくね?
アタマ悪いの?
498:132人目の素数さん
22/06/22 00:03:38.83 v+I+p9gg.net
>>457
コメントありがとう
ちょっと整理するよ
1)黒田本で、まず Dで正則で f(z)≠0から、補助定理「f(z)=e^h(z)の存在他」 URLリンク(imgur.com) を導く
2)次に、定理7.10 (ショットキ(Schottky)) URLリンク(imgur.com)
ここで、Dで正則で f(z)≠0、1で、coshも入れた式を導いている(詳しくは,上記の定理7.10 の証明ご参照)
ここから、先に進んで、定理7.10の不等式を導くところまで進めている
これの続きが P170~172 (>>305)
URLリンク(imgur.com) P170 上記証明の続きから定理7.10 (ショットキ(Schottky))へ
URLリンク(i.imgur.com) P171 定理7.10 (ショットキ(Schottky))証明後半 複素関数概説 黒田正 共立出版 初版18刷 2013
URLリンク(imgur.com) P172 ショットキ定理(Schottky)の系と ピカールの定理(Picard) 複素関数概説 黒田正 共立出版 初版18刷 2013
3)つまりは、指数関数は f(z)≠0と相性がよく、さらに f(z)≠1と組合わせのとき、coshをいれて、不等式を導く
で、環状領域を導いて、ピカールの定理(Picard) へという流れ
4)だから、f(z)≠aは 黒田本のストーリー展開には合わないね
5)但し、いま調べたい関数が、f(z)=0だったり、f(z)=0&1だったりしても、ちょっと上下どちらかに動かせば、≠0や≠0&1にできるぞというのが、>>455の話
で、これはあくまで、枝葉の話で
本題は、>>29-30とか>>103の ”普遍被覆と持ち上げ” を、叩くことにあるわけです
”普遍被覆と持ち上げ”? 関係ないんじゃない?w ということ
499:132人目の素数さん
22/06/22 00:05:05.14 v+I+p9gg.net
さて
<ネタ投下>
URLリンク(imgur.com)
リーマン面の理論 寺杣友秀 2019 まえがき(冒頭抜粋) ~リーマン面の定義と正則関数 P37
URLリンク(imgur.com)
まえがき(冒頭抜粋) リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
2.4 対数関数と平方根の一意化リーマン面 P31 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
2.4 対数関数と平方根の一意化リーマン面 P32 続き リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
2.4 対数関数と平方根の一意化リーマン面 P33 続き リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
2.4 対数関数と平方根の一意化リーマン面 P34 続き リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
第3章
500: リーマン面の定義と正則関数 P36 リーマン面の理論 寺杣友秀 2019 https://imgur.com/rjQSmiZ 第3章 リーマン面の定義と正則関数 P37 続き リーマン面の理論 寺杣友秀 2019 https://www.morikita.co.jp/books/mid/007831 森北出版 リーマン面の理論 寺杣友秀 東京大学名誉教授 2019 https://morikita.tameshiyo.me/9784627078314 試し読み 15ページあり (目次) 第1章 楕円関数の2重周期性と楕円曲線 第2章 複素関数論からの準備 第3章 リーマン面の定義と正則関数 第4章 層とそのコホモロジー 第5章 正則ベクトル束とリーマン面上の有理関数 第6章 セールの双対定理 第7章 コンパクト・リーマン面と代数曲線 第8章 周期積分,ヤコビ多様体とアーベルの定理 第9章 アーベル多様体 第10章 周期積分と微分方程式 第11章 楕円曲線と保型形式
501:132人目の素数さん
22/06/22 05:57:59.27 qK4KbE7h.net
>>458
>いま調べたい関数が、
>f(z)=0だったり、f(z)=0&1だったりしても、
>ちょっと上下どちらかに動かせば、
>≠0や≠0&1にできるぞ
それ、前提が開円盤の場合、
全くの嘘ってことは理解したか?
502:132人目の素数さん
22/06/22 06:10:01.47 qK4KbE7h.net
>>458
>f(z)≠aは 黒田本のストーリー展開には合わないね
頭悪いな f(z)-a≠0とできるじゃん
f(z)=0とかいう訳分からん条件より
よっぽどストーリーに即してる
f(z)≠a,bも、(f(z)-a)/(b-a)≠0,1とできるな
除外される点の個数だけが重要なんだよ
分かったかな?ボウヤ
503:132人目の素数さん
22/06/22 06:17:38.85 qK4KbE7h.net
>>459
開集合の連続像が有界、とかいう
初歩的誤りを臆面もなく口にする
素人にそんな本は無理
微積分からやり直しな
任意の正方行列は逆行列を持つ、
と同レベルの初歩的誤りだわ
そんなんじゃ大学1年の数学、全滅だわwww
504:132人目の素数さん
22/06/22 06:46:29.57 qK4KbE7h.net
じゃ、こっちも質問投下
S^1を円、D^1を区間とする
S^1のD^1バンドルは
筒とメビウスの帯の2種類
これを踏まえて
S^2を球面、D^2を円盤とする さて、
S^2のD^2バンドルはどれだけあるでしょう?
そして違いはどうやって見分けられるでしょう?
このくらい即答できなくちゃ
複素幾何は到底無理だな
505:132人目の素数さん
22/06/22 07:24:31.79 v+I+p9gg.net
>>461-463
必死の論点ずらし
と
取り繕い
御苦労様ですw
506:132人目の素数さん
22/06/22 07:28:35.96 v+I+p9gg.net
>>460
(引用開始)
>いま調べたい関数が、
>f(z)=0だったり、f(z)=0&1だったりしても、
>ちょっと上下どちらかに動かせば、
>≠0や≠0&1にできるぞ
それ、前提が開円盤の場合、
全くの嘘ってことは理解したか?
(引用終り)
さて
1)黒田の補助定理:
<オリジナル>(>>407より)
”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば、Dで
f(z)=e^h(z)=(g(z))^k (kは正の整数)
をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
2)ここで、閉円板D’:|z|<=R で正則であっても、
問題なく、黒田の補助定理は適用できる
つまり、閉円板D’:|z|<=R で正則であったら、
それは、開円板D:|z|<R でも正則であるから、黒田の補助定理は適用できるってこと
3)この場合は、>>455に書いたように、f(z)は閉円板D’で有界だから
もし、開円板D内のあるaで、f(a)=0であったとしても
ある定数Mが存在して、f(z)+M を作れば、0<|f(z)+M| で、f(z)+M ≠0とできて、黒田の補助定理が使える>>455
ってことです
4)さらに、普遍被覆と持ち上げ論では、f(z)(但しf(a)=0)と f(z)+Mとは、両者は同一だが
一方、黒田の補助定理の視点では、全く別物です
(つまりは、この問題では、普遍被覆と持ち上げ論は、ナンセンス!)
5)余談だが、同じことは、定理7.10 (ショットキ(Schottky))の f(z)≠0、1にも言えて、
”f(z)≠0、1”不成立としても、閉円板D’:|z|<=R で正則であれば、上記4)の手段(f(z)+M を作る)が適用できる>>455
なんか、これ分かってない人がいるね
507:132人目の素数さん
22/06/22 09:34:30.28 0myYY5b9.net
言いたいことはそれだけか
508:132人目の素数さん
22/06/22 11:49:33.98 Dzz+vFm/.net
>>465
>閉円板D’:|z|<=R で正則であったら、
>開円板D :|z|<R でも正則であるから、
逆は言えないけど
したがって開円盤のままなら
>もし、開円板D内のあるaで、f(a)=0であったとしても
>ある定数Mが存在して、f(z)+M を作れば、
>0<|f(z)+M| で、f(z)+M ≠0とできて、
とは言えないのでアウト!
一方、f(z)≠0をf(z)≠aとしても、
f'(z)=f(z)-aとすれば元の定理が使える
なんでf(z)=0が出てくるのか分からん
ま、大学入れなかった🐵の考えることなど
大学どころか大学院まで出た👱には理解できんわw
509:132人目の素数さん
22/06/22 11:51:49.82 Dzz+vFm/.net
>>465
>普遍被覆と持ち上げ論では、
普遍、は要らんよ
510:132人目の素数さん
22/06/22 11:54:09.87 Dzz+vFm/.net
>>464
やっぱり>>463は全く理解できんか 🐵にはwww
511:132人目の素数さん
22/06/22 13:30:56.55 qvuD6qGg.net
ともかくセタがアホなのは相手の言ってる事何にもわからんのに反論してくる
しかもなんの反論にもなってない文章、というより数学の文章として意味すら通らないアホ文章作ってくる
いみがわかる分からん以前に数学的に意味すら通らない文字列作成して悦に入る
ともかく無限に頭悪い
512:132人目の素数さん
22/06/22 13:46:51.97 2F1Gh5du.net
>>467
>一方、f(z)≠0をf(z)≠aとしても、
>f'(z)=f(z)-aとすれば元の定理が使える
>なんでf(z)=0が出てくるのか分からん
分からんかw
黒田の補助定理:(>>407より)
”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば、Dで
f(z)=e^h(z)=(g(z))^k (kは正の整数)
をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
この前提条件
「f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば」
これの否定で、正則は認めるとして、
”Dでf(z)≠0”を否定すれば
「f(a)≠0 a∈D」となる
分からんかw
513:132人目の素数さん
22/06/22 14:02:41.43 2F1Gh5du.net
>>470
>数学の文章として意味すら通らないアホ文章作ってくる
>いみがわかる分からん以前に数学的に意味すら通らない文字列作成して悦に入る
>ともかく無限に頭悪い
はい、それはあなた
ブーメラン
例えば>>103
数学的に意味不明
ことばのサラダ
統合失調症
あなたは
無限に賢いw
514:132人目の素数さん
22/06/22 14:08:34.15 2F1Gh5du.net
>>468
>>普遍被覆と持ち上げ論では、
>普遍、は要らんよ
そこ>>103の普遍被覆に合わせたんだ
515:132人目の素数さん
22/06/22 14:10:30.74 2Z2k0OkN.net
>>471
>>なんでf(z)=0が出てくるのか分からん
>分からんか
分からんな
>黒田の補助定理の前提条件
>「f(z)はz平面の開円板D:|z|<R で正則であって
> そこでf(z)≠0であるとすれば」
>の否定で…
何故、前提を否定するのか、その理由が分からんな
516:132人目の素数さん
22/06/22 14:11:42.10 2F1Gh5du.net
>>459
ネタ追加
URLリンク(imgur.com)
楕円曲線と超楕円曲線のリーマン面 リーマン面の理論 寺杣友秀 2019(P38はダブり)
URLリンク(imgur.com)
1.6 楕円曲線を複素数で考える(楕円曲線のリーマン面) P13 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
1.6 楕円曲線を複素数で考える(楕円曲線のリーマン面)つづき P14 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
1.6 楕円曲線を複素数で考える(楕円曲線のリーマン面)つづき2 P15 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
第3章 リーマン面のヤコビアン判定法 リーマン面の定義と正則関数 P38 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
3.3 超楕円曲線 リーマン面の定義と正則関数 P41 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
3.3 超楕円曲線つづき リーマン面の定義と正則関数 P42 リーマン面の理論 寺杣友秀 2019
URLリンク(imgur.com)
3.3 超楕円曲線つづき2 リーマン面の定義と正則関数 P41 リーマン面の理論 寺杣友秀 2019
517:132人目の素数さん
22/06/22 14:20:11.13 zk7J1GTG.net
>>472
能無しがブーメランとか言ってるよ
俺は数学的に意味あることしか書かない
意味わからんのはお前が能無しすぎて理解できてないから
実際今の話にしてもお前以外全員意味わかってる
答えもわかってる
わかってないのはもうお前だけ
その事実すら認識できる能力すらない、おそらく数学板で史上全部見てもベスト5くらいの能無しだよ
518:132人目の素数さん
22/06/22 14:35:14.86 2F1Gh5du.net
>>474
(引用開始)
>黒田の補助定理の前提条件
>「f(z)はz平面の開円板D:|z|<R で正則であって
> そこでf(z)≠0であるとすれば」
>の否定で…
何故、前提を否定するのか、その理由が分からんな
(引用終り)
簡単な話
1)f(a)=0の場合、黒田本の補助定理や定理7.10(ショットキ(Schottky))は使えない
2)しかし、f(z)+Mという超簡単な操作で、f(a)=0を回避できて、それに対して定理が適用できるということ
(定理7.10では、f(a)=1も解消しておかないといけないが)
3)なお、f(z)+Mという超簡単な操作では、関数f(z)の本質は変わらない
だから、>>103の普遍被覆を使った議論は不成立
(この3)が主張のメインかもw)
519:132人目の素数さん
22/06/22 14:37:55.85 2F1Gh5du.net
>>476
ハイハイ」、ことばのサラダね
統合失調症に言われてもなぁ~w
520:132人目の素数さん
22/06/22 14:41:06.84 5K4XnocG.net
>>478
そう、お前がやってるのは統失の言葉のサラダ
普通の人間なら意味のわからない言葉繋げて文章作ろうなどとは思わない
意味のわからない単語繋げて意味の通らない単語の羅列作って言葉の“ひびき”だけで満足する◯チガイ、そしてそれを認識�
521:烽ナきない人間っぽい日本の足手纏い
522:132人目の素数さん
22/06/22 15:24:02.16 7AiDcuQS.net
謎の勢力に苦しめられてるらしい人が傷付くかも知らんから
特定疾患名をディスるのは止めて差し上げろ。
523:132人目の素数さん
22/06/22 15:48:05.10 Rw1u38h+.net
【ブチャ虐殺】 ウソライナのデマソワ、解任される
://rio2016.2ch.sc/test/read.cgi/kokusai/1655264447/l50
URLリンク(o.5ch.net)
524:132人目の素数さん
22/06/22 19:46:20.65 qwoeeLq8.net
>>477
>>何故、前提を否定するのか、その理由が分からんな
>簡単な話
>1)f(a)=0の場合、黒田本の補助定理や
>定理7.10(ショットキ(Schottky))は使えない
そんなことは🐴🦌でもわかる
>2)しかし、f(z)+Mという超簡単な操作で、
>f(a)=0を回避できて、
開円盤のままでは回避できない、と指摘されたら
「ちょっと小さくすれば閉円盤がとれる」と曰ったが
🐴🦌丸出しの姑息な言い訳で流石大学に受からん🐵だ
と思った
>それに対して定理が適用できるということ
定理の適用範囲を拡大するのに
前提を全否定するのが流石🐴🦌
要するに値をとらない箇所を用いるのだから
単純にf(z)≠aなるaがある、と前提すればいい
そこに気づけないのは流石大学に受からん大🐴🦌
>(定理7.10では、f(a)=1も解消しておかないと
> いけないが)
これまた、f(z)≠a,bなるa,bがあるとして
(f(z)-a)/(b-a)≠0,1と置き換えればいい
> >>103の議論は不成立
理解できないから成立しないと喚くのが流石🐴🦌
大学に入れん🐵は数学板に書くな シッシッ
525:132人目の素数さん
22/06/22 20:32:57.88 v+I+p9gg.net
>>480
>謎の勢力に苦しめられてるらしい人が傷付くかも知らんから
>特定疾患名をディスるのは止めて差し上げろ。
どうも
良識あるご指摘ありがとう
アドバイスに従い、特定疾患名などは、
控えるように致します
526:132人目の素数さん
22/06/22 20:43:35.86 cu8t90Cj.net
よく議論が続くね
527:132人目の素数さん
22/06/22 20:48:06.18 ZO5bXCuX.net
議論なんか続いてないよ
こんなもん議論する余地なんぞない
教科書読んで意味わかるかどうかだけ
一名以外全員理解して納得してる
528:132人目の素数さん
22/06/22 20:49:35.40 bKHe/G2v.net
山形大学職員天羽優子@apjの本日の妄言
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
心を病んだ人の阿Q式精神勝利法は意味不明なので
誰か健常者向け日本語に翻訳してください
特に、どこかの党の女性候補が国会議員になると
他の誰かを人権侵害する権利が生じるとする
負け犬特有の妄想が理解不能で笑えます
751 名無しサンプリング@48kHz[sage]
2022/06/22(水) 20:34:58.63 ID:Yw5d5wYy
今日告示があったけどかの女性が国会議員になったら
捻り潰されるだろうね
ネットも出来ないくらいに本格的に精神壊されるかもね
まあ震えて眠れや
529:132人目の素数さん
22/06/22 20:53:03.60 S8ZN0Ouu.net
>>486
江川ダム
530:132人目の素数さん
22/06/22 20:57:02.57 v+I+p9gg.net
>>477 補足
簡単な話
というか、
ごく簡単な例を、しめそう
1)f(z)=z とする。いわゆる恒等写像 id (下記)
2)f(0)=0 だから、黒田の補助定理は使えないが
3)いま、>>29のように 単位円Δ |z|<1 で考えて
f(z)+1 つまり、F(z)=z+1 を考えると、
F(z)≠0だから、F(z)=z+1には、黒田の補助定理は使える
さて、明らかに、zとz+1とは、被覆論で区別が付かない
4)少し大きい 開円板|z|<2 を考えると、F(z)=z+2 とすれば、黒田の補助定理は使える
また、F(z)=z+3 とすれば、この開円板内で、F(z)≠1(当然≠0)と出来て、この場合 定理7.10(ショットキ(Schottky))も適用可
zとz+
531:3 とは、被覆論では区別が付かない (参考) https://ja.wikipedia.org/wiki/%E6%81%92%E7%AD%89%E5%86%99%E5%83%8F 恒等写像 定義 厳密に述べれば、M を集合として、M 上の恒等写像 f とは、定義域および終域がともに M であるような写像であって、M の任意の元 x に対して f(x) = x を満たすものを言う[1]。言葉で書けば、M 上の恒等写像は、M の各元 x に x 自身を対応させて得られる M から M への一つの写像である[2]。 M 上の恒等写像はしばしば idM や 1M などで表される。 (引用終り) 以上
532:132人目の素数さん
22/06/22 21:13:09.68 ZO5bXCuX.net
>>448
なーんにもわかってない
まぁ自分が間抜けな事書き続けてるのはそろそろわかってるんやろ
それでも止まらない
何故か?
恥知らずだからだよ
だから働きもせず人から恵んでもらった金で生活しててもなんとも思わない
まず働け能無し
533:132人目の素数さん
22/06/22 21:28:33.59 v+I+p9gg.net
>>459 >>475
寺杣友秀 リーマン面の理論 2019
を補足しておく
1)まえがき(冒頭抜粋) URLリンク(imgur.com) リーマンは、「その定義域として採用したのが、リーマン面である」とある。最初は定義域だったらしいw
2)この例が、対数関数と平方根の一意化リーマン面 P31~34 ここは、多価になるのを 定義域に対し一意化リーマン面なるものを導入して、一価にする話(一価にする=一意化でしょう)
3)リーマン面の数学的定義を与えるのが、P36-37。この定義は抽象化され、定義域限定ではなくなっている
4)楕円曲線のリーマン面 P13~14 では、リーマン球面を導入して、トーラスを導く話
5)超楕円曲線は、P41~43 だが
P37 平面曲線 w=f(z) から f(w,z)=0 なる複素平面曲線(陰関数) への視点の転換がある
(定義域と値域の区別がなくなる)
(P38のヤコビアン判定法 (下記陰函数定理)を使う)
ここら、寺杣友秀先生、うまく説明していると思った
URLリンク(ja.wikipedia.org)
陰函数定理
陰函数定理を述べるためには、f = (f1, …, fm) のヤコビ行列(函数行列)が必要である。それは f のすべての偏微分によって形作られる行列で、・・略
534:132人目の素数さん
22/06/22 21:37:44.29 d45ZDyMB.net
>>490
まず働け恥知らず
535:132人目の素数さん
22/06/22 21:43:03.78 M7UgCMnT.net
>>488
>zとz+1とは、被覆論では区別が付かない
>zとz+3とは、被覆論では区別が付かない
そもそもf(z)は被覆写像である必要がないが
被覆写像はg(z)だけ そんな根本すら分からん🐴🦌が
被覆論とか言うのがおかしくって腹がよじれるwww
536:132人目の素数さん
22/06/22 21:48:54.83 M7UgCMnT.net
>>490
正則行列が分からん🐵に
逆関数定理も陰関数定理も
分かるわけ有りませんが
537:132人目の素数さん
22/06/23 07:07:08.88 a95T6DpP.net
>>490 補足と訂正
P37 平面曲線 w=f(z) から f(w,z)=0 なる複素平面曲線(陰関数) への視点の転換がある
(定義域と値域の区別がなくなる)
(P38のヤコビアン判定法 (下記陰函数定理)を使う)
↓
1)複素平面曲線(陰関数) への視点の転換は、良いが、
ここは陰函数定理wikipediaの「例と導入」に説明があるとおり
一価関数でない場合にも、曲線の一部に注目して、y=g(x)なる微分可能関数の存在を示すことにある(y=g(x)はwikipediaの表記)
(P13 楕円曲線 で、y^2=x^3+ax^2+bx+c として、y^2=・・のまま。これで、y= の形になってない段階で、実質は陰関数ですね URLリンク(imgur.com) )
2)なお、リーマン面の数学的定義では、特に定義域うんぬんの記述はないが、
P36にあるように、位相空間X (ハウスドルフ)として、Ui∈X で、写像φi:Ui→C (Cは複素平面(P37記述より))
で、φiが正則写像(P37)であることを要求しているので
Xは、写像φiの定義域です
3)なので、具体的な関数w=f(z)(例えば寺杣P41超楕円曲線)を考えるとき、そのリーマン面とは、定義域を複素平面から位相空間X に拡張したものです
(なお「自明なリーマン面の例として、複素平面Cの開集合が挙げられる」(P37)とあります)
詳しくは、寺杣 P36~37 を見てください
以上、補足と訂正でした
538:132人目の素数さん
22/06/23 07:11:31.09 a95T6DpP.net
>>491
病気だね
特定の病名は言わないが
しばらく、5chを離れたらどうだ?
病気こじれるよ
539:132人目の素数さん
22/06/23 09:02:27.22 zituSjZ7.net
>>495
働け乞食
540:132人目の素数さん
22/06/23 10:35:40.53 UYgInIKH.net
いや無能な工学部学部卒止まりが組織立って悪事働いて本当の数学が社会で活躍するの邪魔しまくってる象徴みたく見えるが
541:132人目の素数さん
22/06/23 14:59:29.24 6okYm70B.net
>>496-497
ふふ
悪いね
まあ、>>103みたいないい加減なカキコを見ると
ついつい、「こんなんで良いの?」とツッコミ入れたくなるんだ
寺杣を持ってきた意図もそれ
寺杣を、>>103にぶつけてやろうという意図ですww
542:132人目の素数さん
22/06/23 17:21:43.65 Ug1ofdlj.net
>>498
>>103は間違ってないが
C\{0}の普遍被覆が何か書いてないのが
素人には不親切である
543:132人目の素数さん
22/06/23 17:30:11.92 Ug1ofdlj.net
>>499
>>103を丁寧に書けば以下の通り
g
Δ→C
id↓ ↓exp
Δ→C\{0}
f
idは恒等写像(Δは単連結だから普遍被覆写像)
expはCからC/{0}への普遍被覆写像
つまりgはfの持ち上げ
544:132人目の素数さん
22/06/23 17:38:23.51 Ug1ofdlj.net
>>500
もう一つ書く
g
Δ→C\U
id↓ ↓exp(2πi cosh())
Δ→C\{0,1}
f
Uはexp(2πi cosh(z))=1となるz全体の集合
exp(2πi cosh())はC\UからC\{0,1}への被覆写像
ただしC\Uは単連結ではないから普遍被覆写像ではない
545:132人目の素数さん
22/06/23 17:43:24.22 Ug1ofdlj.net
>>501
最後の一つ
g
Δ→H
id↓ ↓λ
Δ→C\{0,1}
f
Hは上半平面
λはモジュラーλ関数
これは実は普遍被覆写像
546:132人目の素数さん
22/06/23 21:24:41.22 a95T6DpP.net
>>499-502
だから、>>103と同じ間違い
1)まず、>>103”Δ → ℂ\{0} ただし→がf(z)”ってあるよね
これが、間違い
ℂ\{0}は、ℂが複素平面で、\{0}で、点{0}を除いているんだが
これは、指数関数 exp(z)には正しいが
一般の関数f(z)には言えないぞ
2)つまり、>>29より 単位円Δ内 で値0を取らないというだけの規定だから
単位円Δ内の外でなら、値0を取っても良いのです
3)実際、>>488に示したように、f(z)=z+1を考えると、単位円Δ |z|<1 でf(z)≠0
しかし、Δの外のZ=-1 では、f(z)=0 をとるのです
4)同様に >>488に示したように、f(z)=z+3を考えると、開円板 |z|<2 でf(z)≠0、1
しかし、Δの外のZ=-2 でf(z)=1、Z=-3 でf(z)=0 をとるのです
5)要するに、f(z)=z+a (あるa∈Cなる定数) は、その値域は全複素平面を尽くす
(例えば、∀b∈Cに対して、b=z+a は、z=b-a とすれば良いのだ)
だけど、ある領域 |z|<Rとかに限定して、ある特定の値を取らないように調整することは、十分可能だ
6)そして、すでに>>488に示したように
例えば開円板 |z|<R で、f(z)=z+aでf(z)≠0、1 を取らないように、
定数a∈Cを調整することは十分可能
7)f(z)=z+aは分かり易く例示しただけ。f(z)は多項式などにすることも可
単に、f(z)≠0、1とするだけなら、多項式でなくとも、一般の関数でもいろいろ考えられる
繰り返
547:すが、f(z)は一般の関数で可能 8)これ当たり前 一貫校なら高校レベルじゃね?
548:132人目の素数さん
22/06/23 21:49:30.23 PZRZJAYN.net
>>503
>1)まず、”Δ → ℂ\{0} ただし→がf(z)”が、間違い
> ℂ\{0}は、ℂが複素平面で、\{0}で、点{0}を除くが
> 指数関数 exp(z)には正しいが
> 一般の関数f(z)には言えないぞ
66スレの958を読み間違ってるね
「fを単位円Δ上定義された正則関数で
0,1の値を取らないとする」
この瞬間
「一般の関数f(z)」
は完全な見当違いとして却下されました
御愁傷様
549:132人目の素数さん
22/06/23 21:57:03.36 PZRZJAYN.net
>>503
>2)つまり、単位円Δ内 で値0を取らない
> というだけの規定だから 単位円Δ内の外でなら、
> 値0を取っても良いのです
そもそもfの定義域はΔなので、
その外なんて考える必要がありません
考えなくていいことを考えるのは
関数の初歩から分かってない証拠
大学1年の4月からやり直そう
550:132人目の素数さん
22/06/23 22:09:47.15 PZRZJAYN.net
>>503
>3)実際、…
>4)同様に…
>5)要するに、…
>6)そして、…
折角自信満々で鼻膨らませて書いて頂いて恐縮ですが
全く無意味です
もしかして
7)f(z)=z+a…
は、f(z)=exp(g(z))となるg(z)が存在しない
と思ってます?
もしそうだとして、それ、正しいですか?
551:132人目の素数さん
22/06/23 22:22:45.48 PZRZJAYN.net
>>503
>8)これ当たり前
> 一貫校なら高校レベルじゃね?
問題文に書かれた前提条件読み落とすようじゃ
中高一貫校の入試は受かりませんね
あなた、出身高校の偏差値はどの程度?
70切ってるなら、申し訳ないけど、
ここに書くのはやめたほうがいいよ
いいたかないけど早慶の付属でも
75は超えるんだから
しかしその程度では数学科には入れても
数学で博士の学位取って大学の先生になるのは
至難だね
552:132人目の素数さん
22/06/23 22:39:08.73 PZRZJAYN.net
>>507
東大の数学の先生というのは、
だいたい御三家か国立大の付属出身で
しかもそこでも数学はトップレベルの成績
実際微積分なんて中学時代に勝手に学んじゃって
高校じゃ大学1〜2年の数学を勝手に学んでます
で駒場では数学科で学ぶことを勝手に学び
数学科では大学院で学ぶことを勝手に学び
大学院ではもう論文書いてます
それが当たり前の速さってことです
数学なんて講義で学ぶもんじゃないし
研究テーマなんて自分で見つけるもの
大学院生なのに大学1年の微積も線形代数も怪しい
とかいう工学部あたりの土人には一生辿り着けない
553:132人目の素数さん
22/06/23 22:50:11.13 PZRZJAYN.net
>>508
東大の理Ⅰは年間1000人とりますが
その中で数学科に行くのは40人程度
1/25ですね
その中で博士取って大学の先生になるのは
どの程度なんですかね?
554:132人目の素数さん
22/06/23 22:59:01.51 PZRZJAYN.net
コピペ君が何したいのか知らんけど
「自分にも最先端の数学が分かるかも」
と思ってるなら大学1年の数学からやり直しな
馬鹿馬鹿しい?じゃ諦めな
実は数学が全然好きじゃないってことだから
555:132人目の素数さん
22/06/23 23:39:50.76 a95T6DpP.net
>>505
(引用開始)
「fを単位円Δ上定義された正則関数で
0,1の値を取らないとする」
この瞬間
「一般の関数f(z)」
は完全な見当違いとして却下されました
(引用終り)
おいおい誤魔化さないように、
お願いしますよ!w
まず、議論を簡単にするために、黒田を使うよ
黒田の補助定理:(>>407より)
”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば、Dで
f(z)=e^h(z)=(g(z))^k (kは正の整数)
をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
ここで、関数f(z)に対する条件は
1)z平面の開円板D:|z|<R で正則
2)Dでf(z)≠0
条件は、この二つ
あとは、f(z)どんな関数でも可
初等関数から、高等関数、超越関数などなど、なんでもありです
この意味で、「一般の関数f(z)」で良いんだよww
定理7.10(>>458)は、f(z)≠0、1となるだけですよ
556:132人目の素数さん
22/06/23 23:50:37.20 a95T6DpP.net
>>506
(引用開始)
もしかして
7)f(z)=z+a…
は、f(z)=exp(g(z))となるg(z)が存在しない
と思ってます?
もしそうだとして、それ、正しいですか?
(引用終り)
それ、正しい
1)単位円板Dで考える(>>103)
2)a=1/2とする。f(z)=z+1/2 は、
z=-1/2 で、f(-1/2)=0となる!
3)この場合、f(z)=exp(g(z))となるDで正則な関数g(z)は、存在しない
というか、Dで正則などんな関数g(z)をもってきても、指数関数expを使う限り、f(z)=0が実現できない
即ち、f(z)=z+1/2に対しては、Dでf(z)=exp(g(z))とできない
557:132人目の素数さん
22/06/24 06:09:21.84 dNAELeFU.net
>>511
誤魔化すなよ、🐵
>>503で
>1)まず、”Δ → ℂ\{0} ただし→がf(z)”が、間違い
> 一般の関数f(z)には言えないぞ
と、吼えたのは🐵
つまり、🐵は
1)z平面の開円板D:|z|<R で正則
から
2)Dでf(z)≠0
は、導けないから誤りだと吼えた
今更、2)は前提だというのは誤魔化し
🐵は健忘症らしいwww
558:132人目の素数さん
22/06/24 06:16:36.57 dNAELeFU.net
>>512
じゃa=2なら?
一般にaがΔの要素でない場合は?
その場合は1),2)を満たすよ
🐵は如何なる場合も満たさんと吼えてるんだろ?
今更、違うと誤魔化すなよ 耄碌🐵www
559:132人目の素数さん
22/06/24 07:13:46.36 dNAELeFU.net
それにしても🐵のイチャモンは
どれもこれも大学1年4月レベルだな
大学一日も行ったことないだろ?
正直に白状してみ?
560:132人目の素数さん
22/06/24 07:19:14.15 XDMTvB+g.net
>>513-514
必死の曲解誤読による取り繕い、ご苦労w
それ詭弁でしょ?
こっちの主張は、>>503&>>511-512
つまり、>>103”Δ → ℂ\{0} ただし→がf(z)”が
一般には不成立
容易に分かる反例があるということ
当然ですよ。だって、f(z)は指数関数限定じゃない一般の関数だから
f(z)は、Δでf(z)≠0という条件だけだから
”Δ → ℂ\{0} ただし→がf(z)”は言えない(当然反例があるってこと)
それを、>>503&>>511-512で説明している
反例を使う議論は、一貫校なら中学1年レベルじゃね?
561:132人目の素数さん
22/06/24 08:43:22.07 NHJ0oU5g.net
>>516
>>f(z)は、Δでf(z)≠0という条件だけだから
>>”Δ → ℂ\{0} ただし→がf(z)”は言えない(当然反例があるってこと)
ここを読んだだけなので勘違いしているかもしれないが
Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
fはΔからℂ\{0}への写像であること自体は正しいのではないか?
562:132人目の素数さん
22/06/24 10:38:57.88 U07+QK3E.net
>>517
どうも
コメントありがとう
(引用開始)
>>f(z)は、Δでf(z)≠0という条件だけだから
>>”Δ → ℂ\{0} ただし→がf(z)”は言えない(当然反例があるってこと)
ここを読んだだけなので勘違いしているかもしれないが
Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
fはΔからℂ\{0}への写像であること自体は正しいのではないか?
(引用終り)
確かに、そういう解釈は可能だよ
しかし、そう解釈すると、”Δ → ℂ\{0} ただし→がf(z)”は
単に、与えられた条件 Δでf(z)≠0 を図解したにすぎないことになるよね
そう解釈すると、
>>103 の図解で
Δ̅ ℂ̅\̅{̅0̅}̅
↓ ↓
Δ → ℂ\{0}
ただし→がf(z)、↓は普遍被覆、X̅はXの普遍被覆(ℂ̅\̅{̅0̅}̅がくるしいがじゃあなし)
(引用終り)
これが意味をなさないことになると思う
そもそもの問題は、>>29です
そして、いまの議論は、>>103 の冒頭部分
「そもそもなぜf(z)が0でなければf(z)がexpを通過できるのか、すなわちf(z) = exp(g(z))となるg(z)が取れるのかのところにリーマン面の話が入ってる」
に関する説明で、それが上記の図解です
この冒頭部分は、
黒田の補助定理:(>>407より)
”「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば、Dで
f(z)=e^h(z)=(g(z))^k (kは正の整数)
をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる”
が、該当します
つづく
563:132人目の素数さん
22/06/24 10:40:39.40 U07+QK3E.net
>>518
つづき
この>>103を書いた人の図解で
繰り返すが
”Δ → ℂ\{0} ただし→がf(z)”を
”単に、与えられた条件 Δでf(z)≠0 を図解した”
としたら、図解全体が実にトリビアルなものになってしまう
つまり、黒田の補助定理は
f(z):Δ→D’({0}を含まない)で
h(z):Δ→D’’、exp(z):D’’→D’で
exp(h(z)):Δ→D’’→D’
で、h(z)が Dでは正則な関数 とできるという主張
考えてみると、これは直観的には、ほぼ自明です
f(z)が正則だし、expも正則だから、もしh(z)が正則でないと、f(z)で正則で無くなるから(”矛盾”?w。これ背理法っぽいけどねぇw)
そこを厳密に証明しているのが、黒田本 です。詳しくは、>>458に張り付けた黒田本の画像の証明部分をご参照
上記図解も、この程度の「直感的なお話」というならそれでいい
だけど、もしこれが「厳密な数学」だというなら、ツッコミどころ満載でしょう
以上
564:132人目の素数さん
22/06/24 11:45:32.08 afTzGnON.net
>>518
>>>f(z)は、Δでf(z)≠0という条件だけだから
>>>”Δ → ℂ\{0} ただし→がf(z)”は言えない
>>Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
>>fはΔからℂ\{0}への写像であること自体は
>>正しいのではないか?
>確かに、そういう解釈は可能だよ
そもそもそういう解釈以外不可能だろ
頭オカシイのか?
>しかし、そう解釈すると、
>”Δ → ℂ\{0} ただし→がf(z)”
>は単に、与えられた条件 Δでf(z)≠0 を図解した
>にすぎないことになるよね
それの何がどういかんのか?
👱に分かるように説明してみろ 🐵
565:132人目の素数さん
22/06/24 12:00:09.91 afTzGnON.net
>>519
>黒田の補助定理は
>f(z):Δ→D’({0}を含まない)
>h(z):Δ→D’’、
>exp(z):D’’→D’で
>exp(h(z)):Δ→D’’→D’で、
>h(z)が Dでは正則な関数
>とできるという主張
>考えてみると、これは直観的には、ほぼ自明です
>f(z)が正則だし、expも正則だから、
>もしh(z)が正則でないと、f(z)で正則で無くなるから
もしかして、考えたのはそれだけ?
さすが大学入れなかった🐵だなwww
あのな、expが正則なだけじゃ
hが存在するとは言えないぞ
🐵はマジで逆関数定理分かってないな
expが定義域D''で微分が0でないという条件が
必要なことくらい意識せずとも脊髄反射しとけ
マジで死ぬぞwww
566:132人目の素数さん
22/06/24 12:11:39.73 afTzGnON.net
>>519
>「直感的なお話」というならそれでいい
>「厳密な数学」だというなら、
>ツッコミどころ満載でしょう
有界「開」集合の連続像が有界とかいう
🐵の発言は直感的にツッコミどころだらけだろw
「Δでf(z)≠0という条件だけだから
”Δ → ℂ\{0} ただし→がf(z)”は言えない」
とかトートロジー否定する☆違い発言ブチかます
🐵の分際で厳密とかいうなwww
笑いが止まらんwwwwwww
567:132人目の素数さん
22/06/24 12:40:09.28 hEJFBgGS.net
>>519
また能無しのカスがクズ文章書いとるわ
働け乞食
568:132人目の素数さん
22/06/24 13:26:34.55 Uy3th1Z/.net
>>しかし、そう解釈すると、”Δ → ℂ\{0} ただし→がf(z)”は
>>単に、与えられた条件 Δでf(z)≠0 を図解したにすぎないことになるよね
正しいかどうかだけを問題にすることは数学ではしばしば最も重要です。
「反例」という言葉の使い方にも気を付けたほうがよいのでは?
569:132人目の素数さん
22/06/24 13:47:16.25 /EZrNx6l.net
偉大な数学者達の生み出した可換図式の技法もこの能無しの乞食にはその価値も分からん
自分の事世紀の大天才とでも思ってるんやろ
完全に狂ってるわ
570:132人目の素数さん
22/06/24 14:03:49.58 X4vP5cNo.net
>>525
誤 天才
正 天災
571:132人目の素数さん
22/06/24 14:12:04.31 U07+QK3E.net
>>524
コメントありがとう
>正しいかどうかだけを問題にすることは数学ではしばしば最も重要です。
それはありと思う
厳密な証明の前にね
>「反例」という言葉の使い方にも気を付けたほうがよいのでは?
ありがとう。気を付けるよ
572:132人目の素数さん
22/06/24 14:15:45.38 X4vP5cNo.net
>>524
関数f:D→Rと書いたら
∀x∈D.f(x)∈R
(Dに属する任意のxに対して、f(x)はRに属する)
が成り立つと読む
それ以外の読み方は自己流誤読
573:132人目の素数さん
22/06/24 14:19:36.60 X4vP5cNo.net
>>527
>ありがとう。気を付けるよ
口先だけなら🐵でも言える
具体的に如何なる方法で気をつけるんだい?
574:132人目の素数さん
22/06/24 14:46:53.00 X4vP5cNo.net
>>529
基本的に
1.∀と∃の読み書きができない奴に数学書は読めない
(数学書に一切論理記号が出てこなくても)
2.開集合閉集合の定義も知らん奴に解析学は分からない
3.行列のランクも知らん奴に代数学は分からない
575:132人目の素数さん
22/06/24 14:54:44.19 U07+QK3E.net
>>520-522
必死の言い繕いと論点ずらし
ご苦労様ですw
(引用開始)
>>>f(z)は、Δでf(z)≠0という条件だけだから
>>>”Δ → ℂ\{0} ただし→がf(z)”は言えない
>>Δでf(z)≠0ならfの値域はℂ\{0}に含まれるわけだから
>>fはΔからℂ\{0}への写像であること自体は
>>正しいのではないか?
>確かに、そういう解釈は可能だよ
そもそもそういう解釈以外不可能だろ
(引用終り)
それ、想定される回答の一つだった
だから、なんで>>513の時点で、それを言わないのかと思ったよw
想定回答に対する用意の応答を書いたのが、>>518-519だよ
いくつか、補足しておこう
1)関数f(z)は、「Δでf(z)≠0という条件だけ」だ。だから、f(z)=z+a (a>1)のように、全てのCを尽くすことも可
2)従って、f(z)の大域的なリーマン面は、全て可能(下記の 一意化定理 wikipedia、吉冨 賢太郎を ご参照)
3)従って、>>519 に記した f(z):Δ→D’で、Δは単連結だが、D’は単連結とは限らない
実際、黒田の
576:定理7.10 ピカールの定理(>>458)f(z)≠0、1の場合に、環状領域を成す(>>320)ので、単連結ではない (なお、くどく指摘しておくが、>>103で「そしてΔが単連結だからΔ̅→Δは同型だからfが右側の↓を通過する事になる」書いたよねぇw で、D’が単連結でないから、同型じゃないよね?w どう言い訳するの?w ) 4)あと、そもそもが、(>>29より)「Schottkyの定理の証明の最初の入り口 リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話」 だったw では聞く。>>103の図式で、f(z)のリーマン面(&普遍被覆リーマン面)、指数関数expのリーマン面(&普遍被覆リーマン面)を明示せよ! 上記指摘を踏まえて、>>103の図式をちゃんと定式化してみなよww ツッコミどころ満載になりそうだねw つづく
577:132人目の素数さん
22/06/24 14:56:48.36 U07+QK3E.net
>>531
つづき
(参考)
URLリンク(ja.wikipedia.org)
一意化定理
分類
すべてのリーマン面はその普遍被覆の上の離散群(discrete group)の自由で固有な正則作用の商であり、この普遍被覆は次の中のひとつに正則同型(「共形同値」ということもある)である。
1.リーマン球面(曲率 +1)
2.複素平面(曲率 0)
3.複素平面内の単位円板/双曲平面(英語版)(Hyperbolic plane) (曲率 -1).
URLリンク(www2.meijo-u.ac.jp)
第 15 回 整数論サマースクール 報告集, pp.1-13
リーマン面と代数曲線 吉冨 賢太郎
P4
R0 を R の被覆リーマン面という. 被覆多様体の同型や自己同型群などは位相
写像のかわりに解析写像として同様に定義される. このようにして (閉) リーマン面を分類
するには単連結リーマン面を考え, その自己同型群の不連続部分群の共役類を求め, その代
表系に対応するリーマン面を考えればよいことがわかる.
而して, リーマン面は以下のように分類される.
定理 1.6. リーマン面 R は以下のいずれかと同型である. それぞれ, 普遍被覆リーマン面
が 楕円型, 放物型, 双曲型であるという.
略
(引用終り)
以上
578:132人目の素数さん
22/06/24 15:01:00.58 ycLw4uAY.net
>>531
論点など1ミリもズレとらんわ乞食
あの可換図式が理解できてない事こそお前の知能の限界なんだよクズ
そしてその大元の原因は
働かなくても恥ずかしいと思えない恥知らず
の人間性が根本なんだよ乞食
579:132人目の素数さん
22/06/24 15:01:57.69 X4vP5cNo.net
>>530
🐵は石谷茂の「…に泣く」4部作でも読め
っていうか天才でもない限り、
大学数学に驚愕して慌てふためいた挙げ句
上記の本を読み救われるというのが現実
…みんな口にはしないけどなwww
580:132人目の素数さん
22/06/24 15:11:16.25 X4vP5cNo.net
>>531
>>>確かに、そういう解釈は可能だよ
>>そもそもそういう解釈以外不可能だろ
>それ、想定される回答の一つだったから、
>なんで>>513で、それを言わないのかと思ったよw
🐵が何をどう勘違いしてるか
🐵自身が語らなくては
🐵の誤りを正せないからな
581:132人目の素数さん
22/06/24 15:16:22.74 X4vP5cNo.net
>>531
>想定回答に対する用意の応答が、>>519
582:だよ その初歩的誤りの指摘が、>>521だが どこがどうわからなかったか? 微分が0でないと逆関数が存在するというところか?
583:132人目の素数さん
22/06/24 15:27:02.98 X4vP5cNo.net
>>531
>1)関数f(z)は、「Δでf(z)≠0という条件だけ」だ。
>だから、f(z)=z+a (|a|>1)のように、
>全てのCを尽くすことも可
🐵は相変わらず舌が足らんなw
「定義域をΔからC全体に拡張すれば」
全てのCを尽くすことも可、と言いたいらしいが
そもそも定義域を拡張する必要がない
g=log(z+a)でいい
aがΔの外ならべき級数で表せる
何の問題がある?
584:132人目の素数さん
22/06/24 15:41:41.05 X4vP5cNo.net
>>531
>では聞く。図式で、
>f(z)のリーマン面(&普遍被覆リーマン面)、
>指数関数expのリーマン面(&普遍被覆リーマン面)
>を明示せよ!
🐵が何故ガロア理論の本を読めないのか分かったw
自分勝手な問を立てて、その答えを探す
という読み方しかしてないだろ?
それじゃどんな数学書も読めんわw
数学の理論は🐵の問題意識とは独立だからな
他人の云うことを黙って一通り聞くだけの
心の余裕がない精神的貧民には学問は無理
ということで、🐵
トンチンカンな問題意識は今すぐドブに捨てろ
585:132人目の素数さん
22/06/24 16:00:57.73 X4vP5cNo.net
>>532
>(閉) リーマン面を分類するには
>単連結リーマン面を考え,
>その自己同型群の不連続部分群の共役類を求め,
>その代表系に対応するリーマン面を考えればよい
>ことがわかる
C\{0}の普遍被覆はCで、expはその被覆写像
C\{0}の基本群は加法群Zだが
その部分群nZで割った商群Z/nZに対応する被覆が
C\{0}のn重被覆C\{0}で、z^nがその被覆写像
exp(z)=(exp(z/n))^n
穴がn個の平面でも同様のことは可能
ただし基本群が可換でないから
正規部分群をとる必要がある
(でないと商群ができない)
586:132人目の素数さん
22/06/24 20:59:27.92 XDMTvB+g.net
>>533-539
必死の言い繕いと論点ずらし
ご苦労様ですw
繰り返すw
では聞く。>>103の図式で、
1)f(z)のリーマン面(&普遍被覆リーマン面)、
2)指数関数expのリーマン面(&普遍被覆リーマン面)
を明示せよ!w
587:132人目の素数さん
22/06/24 22:03:12.72 AMcb4rjq.net
>>540
お前に圏論の技術解説できるわけないやろカス
こういう具体例を通じてそれを積み上げていった先に圏論のテクニックがある
賢い奴はそんなもん解説されなくても自分で感じ取って行ける
アホ「図式なんか関係ないやん」
アホ~w能無し~wwwwカス~wwwww
数学のセンスも知能も全くないわカス~wwwwwwwww
まず働け能無し
税金払ってるのアホらしなるわ
588:132人目の素数さん
22/06/24 23:00:30.09 XDMTvB+g.net
>>540
必死の言い繕いと論点ずらし
ご苦労様ですw
>お前に圏論の技術解説できるわけないやろカス
ふww
私が解説するのではない!
ツッコミを入れているんだよ、
質問の形でね
なんでもそうだが、実際に自分がやる十分の一以下の力で、
ツッコミや質問は可能だ
あたかも、プロの音楽の演奏や、絵画の名作は描けなくとも
演奏を聴いたり、名画の鑑賞は、素人でもできるが如しw
で、突然、圏論持ち出して
笑えるよ
あんたがやるべき事は、数学の議論としては
自分の書いた>>29や>>103を、数学的に擁護することだ
それが出来ないんだ
だから、圏論持ち出して、論点ずらしか
笑えるw
589:132人目の素数さん
22/06/24 23:12:16.03 aTvXcgvA.net
>>542
突然圏論wwwwwww
アホ~wwwwwwww
最初から最後までずっと圏論の話じゃアホ~wwwwwwwwww
能無しwwwwwwwwwwwww
590:132人目の素数さん
22/06/25 03:01:43.59 iUyhy4BH.net
通りすがりはキツネにつままれたようだ
591:132人目の素数さん
22/06/25 05:16:35.57 CDMP7v+2.net
>>540
>繰り返す
>>538読んだ? いい加減
自分勝手な問題設定
の自爆展開から抜け出そうぜ
expが被覆写像で、f()=exp(g()) なら、gはfの持ち上げで
持ち上げは無条件に存在するわけでないが
fの定義域が単連結なら存在する
(
592:被覆が普遍被覆か否かに関わらず) って話だって理解しようぜ
593:132人目の素数さん
22/06/25 05:32:08 CDMP7v+2.net
>>542
>私が解説するのではない!
>ツッコミを入れているんだよ、質問の形でね
>なんでもそうだが、
>実際に自分がやる十分の一以下の力で、
>ツッコミや質問は可能だ
でも、それじゃ、回答が理解できず
トンチンカンな反応でボケるしかないわな
あんた、いっつもそれやで
任意の正方行列に逆行列が存在するとか、
開集合が有界なら連続写像の像が有界とか、
定義域では値が0でない、という前提に対して
定義域の外で値が0になるならあかんとか
論理は分からん
定義は確認せん
定理は理解せん
そんなズブの素人に数学は無理
石谷茂の「泣く」4部作読んでや
あんたが落ちた穴、全部そこにあるから
594:132人目の素数さん
22/06/25 06:37:54.54 rjLBI7WT.net
>>543-544
>最初から最後までずっと圏論の話じゃアホ~wwwwwwwwww
>通りすがりはキツネにつままれたようだ
ですよね
下記の“On the history of the Riemann mapping theorem”Gray, Jeremy (1994)にあるように
ここらの”Riemann mapping theorem”議論は、圏論(1950年)以前の研究によるもの
だから、圏論は必須ではないし、逆にここらの複素関数論の”Riemann mapping theorem”が
圏論を通じて、代数幾何(と圏論の進化)のモデルになったというのが、歴史の流れでしょうね
URLリンク(ja.wikipedia.org)
一意化定理 (リーマン面)
1歴史
URLリンク(www.math.stonybrook.edu)
Gray, Jeremy (1994), “On the history of the Riemann mapping theorem”, Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento (34): 47?94, MR1295591
URLリンク(ja.wikipedia.org)
圏論
歴史
サミュエル・アイレンベルグとソーンダース・マックレーンはそれに厳密な定義が必要だと考え、1942年の論文[2]において圏や関手、自然変換といったアイデアを(その名称ではなかったが)導入し、その後1945年の「General Theory of Natural Equivalences[3]」において圏(あるいは関手、自然変換)をその名前で定義した[4]。
その後 1950年代から 1960年代にかけてこの理論は、ホモロジー代数における様々な計算の抽象的な定式化を取り込むことによって、続いて、集合論に基づく定式化では不十分だった代数幾何学の公理化を与える言葉として進展した。
595:132人目の素数さん
22/06/25 06:46:18.97 rjLBI7WT.net
>>545-546
必死の言い繕いと論点ずらし
ご苦労様ですw
繰り返すw
では聞く。>>103の図式で、
1)f(z)のリーマン面(&普遍被覆リーマン面)、
2)指数関数expのリーマン面(&普遍被覆リーマン面)
を明示せよ!w
なぜ、この単純な問いに、答えが出ない?w
>>29より
”リーマン面の話題が出てたからちょっと復習の意味も込めて教科書読み直してみつけた話
Schottkyの定理の証明の最初の入り口
リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話”
だったでしょw
596:132人目の素数さん
22/06/25 06:49:04.19 CDMP7v+2.net
>>547
>ですよね
線形代数も位相も初歩から間違ってる素人が
何言ってもおミソだけどな
597:132人目の素数さん
22/06/25 06:53:47.06 CDMP7v+2.net
>>548
>繰り返す
>(中略)
>なぜ、この単純な問いに、答えが出ない?
元の話と全然無関係だから
分からん? だったらヤバいね
ヒト失格
598:132人目の素数さん
22/06/25 07:45:15.75 rjLBI7WT.net
>>550
必死の言い繕いと論点ずらし
ご苦労様ですw
>>なぜ、この単純な問いに、答えが出ない?
>元の話と全然無関係だから
笑える
・だれが聞いても、それって、>>548の問いに
答えられないことの言い訳そのものじゃんww
・全然無関係? エスパー氏は(>>548より)
”Schottkyの定理の証明の最初の入り口
リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話”
と言ってますよw
599:132人目の素数さん
22/06/25 07:59:25.92 rjLBI7WT.net
>>551 補足
IUTアンチ(>>5ご参照)にして、数理論理くんとかエスパー氏と呼ばれる彼は
リーマン面で妄想したんだね(>>29と>>103)
つまり、>>458の黒田本 複素関数概説 共立出版(該当箇所の画像をアップしてあるよ)
を見て、>>29と>>103が閃いたんだw
それは悪くない。渕野語録(下記)
「アイデアの飛翔をうながす(可能性を持つ)「数学的直観」とよばれるもので,
これは, ときには,意識的に厳密には間違っている議論すら含んでいたり,
寓話的であったりすることですらあるような,
かなり得体の知れないものである」だ
だから、>>548の簡単な問いに答えられないならば
「よく考えたら、妄想でした」と白状しなよw
数学妄想は、”アイデアの飛翔をうながす(可能性を持つ)「数学的直観」”で
全否定すべきものではない。それはそれで、価値があるよ
つづく
600:132人目の素数さん
22/06/25 07:59:52.66 rjLBI7WT.net
>>552
つづき
(参考)
”厳密性を数学と取りちがえるという勘違い”(渕野語録)
前スレ Inter-universal geometry と ABC予想 (応援スレ) 66 の400より
現代数学の系譜11 ガロア理論を読む24 スレリンク(math板:654番)
(抜粋)
あなたのまったく逆を、渕野先生が書いている
”厳密性を数学と取りちがえるという勘違い”
URLリンク(www.)アマゾン
数とは何かそして何であるべきか デデキント 訳解説 渕野昌 筑摩書房2013
「数学的直観と数学の基礎付け 訳者による解説とあとがき」
P314
(抜粋)
数学の基礎付けの研究は,数学が厳密でありさえすればよい, という価値観を確立しようとしているものではない.
これは自明のことのようにも思えるが,厳密性を数学と取りちがえるという勘違いは,
たとえば数学教育などで蔓延している可能性もあるので,
ここに明言しておく必要があるように思える
多くの数学の研究者にとっては,数学は,記号列として記述された「死んだ」数学ではなく,
思考のプロセスとしての脳髄の生理現象そのものであろう
したがって,数学はその意味での実存として数学者の生の隣り合わせにあるもの,と意識されることになるだろう
そのような「生きた」「実存としての」(existentialな)数学で問題になるのは,
アイデアの飛翔をうながす(可能性を持つ)「数学的直観」とよばれるもので,
これは, ときには,意識的に厳密には間違っている議論すら含んでいたり,
寓話的であったりすることですらあるような,
かなり得体の知れないものである
(引用終り)
以上
601:132人目の素数さん
22/06/25 09:04:13.08 iUyhy4BH.net
>>548
「103の図式」というものを見てみたが
いくつか引いてある横線の意味がよくわからない
602:132人目の素数さん
22/06/25 10:10:21.39 SQSzpSXj.net
必死wwwwwwwwwwwww
603:132人目の素数さん
22/06/25 10:13:32.72 CBmWYjYj.net
>>554
ℂ̅\̅{̅0̅}̅はℂ\{0}の普遍被覆だそうだ
実際にはℂだが🐴🦌には教えたくなくて
必死で隠蔽したいそうだ あぁ下らん
604:132人目の素数さん
22/06/25 10:21:03.21 SQSzpSXj.net
アホセタのアホレスなど読むに値しないから基本読んでないけど久々に>>548読んだらやはり数学的に意味ない事書いとるわ
アホ~
アホセタ~
お前には意味わかんないよバーカ
バイト探せ乞食
605:132人目の素数さん
22/06/25 10:27:47.95 SQSzpSXj.net
まぁ久々に読んだから答えとこか
f(z)のリーマン面はf(z)だよバーカwwwwwwwwwwwww
606:132人目の素数さん
22/06/25 10:29:44.99 CBmWYjYj.net
>>551
>リーマン面の話知ってれば
正しくは「被覆と持ち上げを知ってれば」だね
>何を確認すればいいか
exp(2πi cosh())が被覆写像であること
つまり局所同相写像であることを確認すればいい
具体的にはexp(2πi cosh())の微分が
定義域上で0でないこと
定義域は明示されてないが
像に1が含まれないことから
1
607:を値とする点は定義域に属さないと分かる >☆秒で書けて☆分で解ける話 上記のことに気づけないのは 被覆も逆関数定理も分かってない証拠 しかも背理法すら使えてない
608:132人目の素数さん
22/06/25 10:29:59.33 SQSzpSXj.net
おっとf(z)の定義域そのものね
元々正則関数f(z)なんだから何も取り替える必要ないわな
「××のリーマン面」の“××”の部分に何が来るのかなーんも意味わかってないwww
何故か?
そもそも“リーマン面”わかんないもんね~wwwwwwwwwwww
609:132人目の素数さん
22/06/25 15:02:10.88 rjLBI7WT.net
>>558 >>560
5秒で分かる話で、解答するのに、何日もかかるw
>f(z)のリーマン面はf(z)だよ
>おっとf(z)の定義域そのものね
ご苦労さん
で、>>548の問いは二つあったよ
もう一つの ”2)指数関数expのリーマン面(&普遍被覆リーマン面)”は、どうしたの?ww
610:132人目の素数さん
22/06/25 15:03:52.86 pLkV8Y+r.net
>>561
アホ~
それも答えられてるやろ~
アホ~wwwww
全然意味わかってないwwwwwwwww
能無しwwwwwwwwwwwwww
611:132人目の素数さん
22/06/25 15:52:48.87 cguf2PsU.net
>>561
>>2)指数関数expのリーマン面”は、どうしたの?
>それも答えられてるやろ〜
45,315,375,>>500で4回も答えられてますね
ついでにいうと
h
Δ→C/0
id↓ ↓()^n
Δ→C\{0}
f
idは恒等写像(Δは単連結だから普遍被覆写像)
()^nはC\{0}からC\{0}への被覆写像
612:132人目の素数さん
22/06/25 16:42:03.80 Gky1uZiR.net
中卒に数学は無理
613:132人目の素数さん
22/06/25 17:15:19.79 yb420Xkg.net
私は大卒
614:132人目の素数さん
22/06/25 18:22:38.29 rjLBI7WT.net
>>563
なんか誤魔化してるなww
1.まず
>>> 2)指数関数expのリーマン面”は、どうしたの?
>>それも答えられてるやろ〜
指数関数expのリーマン面は、単に定義域という抽象的答えでは不足だろ
もっと、具体的に、指数関数expの定義域について答えられるはずだよwww
2.さらに
(引用開始)
h
Δ→C/0
id↓ ↓()^n
Δ→C\{0}
f
idは恒等写像(Δは単連結だから普遍被覆写像)
()^nはC\{0}からC\{0}への被覆写像
(引用終り)
それはっきりhを書いた分、下記>>103より大分ましだけどw
>>103より
(引用開始)
Δ̅ ℂ̅\̅{̅0̅}̅
↓ ↓
Δ → ℂ\{0}
ただし→がf(z)、↓は普遍被覆、X̅はXの普遍被覆(ℂ̅\̅{̅0̅}̅がくるしいがじゃあなし)
で被覆空間の一般論でf:Δ→ ℂ\{0}がf̅:Δ̅ → ℂ̅\̅{̅0̅}̅に持ち上がる、そしてΔが単連結だからΔ̅→Δは同型だからfが右側の↓を通過する事になる
これが”f(z)が0にならないのでf(z)がexp(z)を通過する原理”、この原理をきちんとこの段階で理解できていれば、その次のg(z):Δ→ℂをcosh(z)を通過させるところも同じ
(引用終り)
1)これで、C/0とC\{0}とℂ̅\̅{̅0̅}̅とℂ\{0}と
この4つの記号について、説明して
どれかとどれかは同じ? あるいは、全部別なの?w タイポ訂正あるんじゃない?ww
2)上記 >>563では、上側のΔが、>>>103ではΔ̅ となっているけど、どちらが正しいのかな?w
3)上記の”↓()^n”で、「()^nはC\{0}からC\{0}への被覆写像」と書いたよね
一方、>>563では 「fが右側の↓を通過する事になる」「これが”f(z)が0にならないのでf(z)がexp(z)を通過する原理”」
と書かれているよ。つまり、「fが右側の↓」がexp(z)と読める。”()^n=exp(z)”と解釈して良いかな?
まずは、この程度ツッコミ入れるよw