Inter-universal geometry と ABC予想 (応援スレ) 67at MATH
Inter-universal geometry と ABC予想 (応援スレ) 67 - 暇つぶし2ch44:132人目の素数さん
22/05/30 21:12:23.71 MglcMLvz.net
ここらの話が、”Teichmuller space”に繋がっているんだね
URLリンク(en.wikipedia.org)
Riemann surface
Classification of Riemann surfaces
Parabolic Riemann surfaces
If X is a Riemann surface whose universal cover is isomorphic to the complex plane C then it is isomorphic one of the following surfaces:
・ C itself;
・The quotient C/Z;
・A quotient C/(Z +Zτ) where τ ∈ C with Im (τ)>0.
Topologically there are only three types: the plane, the cylinder and the torus. But while in the two former case the (parabolic) Riemann surface structure is unique, varying the parameter τ in the third case gives non-isomorphic Riemann surfaces. The description by the parameter τ gives the Teichmuller space of "marked" Riemann surfaces (in addition to the Riemann surface structure one adds the topological data of a "marking", which can be seen as a fixed homeomorphism to the torus). To obtain the analytic moduli space (forgetting the marking) one takes the quotient of Teichmuller space by the mapping class group. In this case it is the modular curve.
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch