22/06/08 21:00:58.67 V9H7okra.net
>>206
ありがと
じゃ、その”微分が0でない=局所同相”使って
>>29の
”fを単位円Δ上定義された正則関数で0,1の値を取らないとする
このときΔ上の正則関数gでf(z) = exp(2πicosh(g(z)))を満たすものがとれる
リーマン面の話題が出てたからちょっと復習の意味も込めて教科書読み直してみつけた話
Schottkyの定理の証明の最初の入り口
リーマン面の話知ってれば何を確認すればいいか0.5秒で書けて5分で解ける話
できるんか?”
を、彼の主張の筋でやってみて
なお、彼がいうには、上記は黒田本 >>183の式よりも、一手間簡単に示せるという
それも説明してね
よろしく