Inter-universal geometry と ABC予想 (応援スレ) 67at MATH
Inter-universal geometry と ABC予想 (応援スレ) 67 - 暇つぶし2ch215:132人目の素数さん
22/06/08 17:35:23.85 qHXmRjRk.net
>>73 補足と追加
指数関数と対数関数 P46-48 複素関数概説 黒田正 共立出版 初版18刷 2013
の画像、アップします
URLリンク(imgur.com) P46
URLリンク(imgur.com) P47
URLリンク(i.imgur.com) P48
なお
該当ページの説明は、すでに>>73に書いた通りです
P47 ”図14を使って、”対数関数のリーマン(被覆)面とよばれている”と説明している”(>>73)
は、下記の”普遍被覆空間”の図も参照すると、理解が深まると思います
(参考)
URLリンク(ja.wikipedia.org)
被覆空間
URLリンク(upload.wikimedia.org)
被覆写像 p : Y → X によって底空間 X の開集合 U は被覆空間 Y の同相な開集合 S1, S2, S3, … によって「均一に被覆」されている。
具体例
R は、単位円 S1 の普遍被覆である。指数写像
p(t) = exp(2πit)
により、写像 p : R → S1 は被覆で、S1 の各点は無限回被覆される。
(引用終り)
なので、>>101 の批判「アンポンタンの俺様定義がなぜダメか?
それはそんな俺様定義したってホントにそれで数学の問題解くのに役に立つんかって話」
は、完全に外れです。黒田本にある通りです!w  (これを言いたかったんだww)
なお、学術的な議論の場合、ある程度の引用は法律上認められています
また、天国の黒田先生も、先生の御著書の議論は許容してくれると思います
なお、もし著作権上問題だと思われたら、共立出版か黒田正のご遺族で、著作権を承継されている権利をお持ちの方
運営を通して、私に連絡をとってください
著作権を持っていない方の(部外者) ご意見や議論は、この件については ここではご遠慮願います
(どうぞ、共立出版へ連絡をとって下さい)
以上
では


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch