22/11/21 19:21:34.24 NVftFyVp.net
5,7をA 2,4,8をB 3,9をCとする
B□B□B□を① B□□BCBを② BCB□□Bを③ □B□B□Bを④とする
場合1 6が中間にあるとき
この場合、6の両隣はAだからA6Aという列になり、この列をDとする
①の□にDとC二つを置く仕方は3通りだから場合の数は3*3!*2!*2!=72
②の□にDとCを置く仕方は2通りで場合の数は48
③は②と同様だから場合の数は48
④は①と同じだから場合の数は72
場合2 6が左端にあるとき
この場合、二番目にAが来て三番目以降の並びが①~④になる
①の□にAとC二つを置く仕方は場合1のときの①と同じ
②の□にAとCを置く仕方は場合1のときの②と同じ
③も場合1のときの③と同じで④も同様
場合3 6が右端にあるとき
この場合は7番目にAがあって8番目に6があり、1~6番目を①~④で表す
この場合における①~④の場合の数は明らかに場合2のときのそれと同様
先頭がBである場合の数は 場合1または場合3における①②③のそれだから(72+48+48)*2=336
場合1で先頭がCである場合の数は ④のCB□B□Bの□にDとCを置く仕方の2に3!*2!*2!を掛けた48
場合3で先頭がCである場合の数は ④のCB□B□Bの□にAとCを置く仕方の2に3!*2!*2!を掛けた48
合わせて、先頭がCである場合の数は 96
先頭が4以下である場合の数は 112+96+112=320
ゆえに先頭が5である列の中での13番目を見ればよい
52から始まる列は 52CBCB76 で2!*2!の4通り
53から始まる列は 53BCBC76 で4通り
54から始まる列も同様に4通りだから13番目は56から始まる最小のもの
場合1の④にあたりDBCBCBで 56723498