22/09/22 15:42:46.27 7W7zML5Y.net
>>565の続き
・mが奇数(m=2k+1)のとき
いくつかの解が存在し、mが増えると解の個数も
増えると考えられる。
A=上位桁×10^m について、ほぼ等しい2数の積
A=PQ に分ける約数 P,Q が存在し、
下位桁の候補 ((1/2)(P-Q))^2 が
ちょうど m桁となればよい。
解を探す場合、下位桁は総当たりではなく
√A に近いP、積がAになるQ の組を
10^k≦(1/2)(P-Q)<(√10)(10^k)
の範囲でだけ探せばよく、やや高速化できる。
他にも色々法則がありそうだけど
いちおうここまで