小中学校範囲の算数・数学の問題のスレ Part 59at MATH
小中学校範囲の算数・数学の問題のスレ Part 59 - 暇つぶし2ch304:132人目の素数さん
22/07/23 16:51:54.92 AmWhNjG0.net
>>294
(3)は弧ACじゃなくて弧CAだから
4/9じゃなくて5/9じゃね

305:イナ
22/07/24 08:31:15.64 0Q8duwEw.net
>>294
>>293
狐の向きか思た。寺が神社の⛩🐕
孤なの? 円弧の弧じゃないの?

306:132人目の素数さん
22/07/24 23:50:02.30 Hz3LYEko.net
演算はすべて関数と言うことができるのでしょうか?

307:132人目の素数さん
22/07/24 23:55:56.34 hLGXpQkG.net
>>297
いいえ
値が一意に決まらなければ関数ではありません

308:132人目の素数さん
22/07/25 11:21:32.79 s250kz72.net
いくつかの入力からひとつの出力を返す関数を演算と言うんじゃないかな

309:132人目の素数さん
22/07/25 21:07:41.45 hfEQl656.net
陰関数f(x,y)=0はxに対してyが複数

310:132人目の素数さん
22/07/25 21:38:53.62 GoX4PuFf.net
正負2つの解(出力)を持つ演算とか、無数の解を持つ方程式とかがありましたか。

311:132人目の素数さん
22/07/26 04:13:11.24 cPnuy5sU.net
>>301
無数の解をもつ方程式 0x=0

312:132人目の素数さん
22/07/27 14:15:47.86 SaQ43MJM.net
答えは凄く単純なのに考えすぎちゃってドツボにはまる
あるある

313:132人目の素数さん
22/07/27 14:33:26.21 i554eji4.net
写像を学ぼう

314:132人目の素数さん
22/07/27 14:35:12.74 i554eji4.net
f : X → Y

315:132人目の素数さん
22/07/27 21:05:58.15 hVD+QJUs.net
>>302
x=x

316:イナ
22/07/29 11:33:03.99 g88RY2hN.net
>>296訂正。
>>285
(1)∠AOB=360°/(1+3+5)=40°
(2)π6^2/3=12π
(3)(5/9)2π・6=20π/3

317:132人目の素数さん
22/07/29 16:17:08.58 CN486NLH.net
とっくに訂正されててワロス

318:132人目の素数さん
22/07/29 21:47:10.46 OQNxmPSs.net
じっくり中学数学からやり直してるが俺に数学障害があるのがはっきりわかった
三日前に解いた文章問題を再度やってみたら全然解けないって、まじで障害があるとしか思えんわ

319:132人目の素数さん
22/07/29 21:53:00.15 x7cRi59b.net
>>309
毎日解かないからだよ

320:132人目の素数さん
22/07/29 23:16:40.75 WqrITVTI.net
>>309
いやいや。三日も経ったら普通の人は忘れるに決まってる。
リアルタイムで習ってる中学生だって復習するだろ。自主的か否かはともかく。
最初のうちはその日のうちに復習しないと。

321:132人目の素数さん
22/07/31 08:59:19 rNEsEGQn.net
中1ドリル、平面図形の項です
画像の問題の(2)が解りません

解答には(180°-30°)÷2=75°とあります
180-30までは解るのですが何故2で割るんでしょうか?
∠OBAと∠OABの角度が等しいことはどこから解るんですか?

322:312
22/07/31 09:00:00 rNEsEGQn.net
すみません、画像を添付し忘れました

URLリンク(i.imgur.com)

323:132人目の素数さん
22/07/31 09:08:48.23 X+g5MiwT.net
>>313
OA,OBは円の半径だから、同じ長さ

324:132人目の素数さん
22/07/31 09:09:49.50 vvOx3Bfp.net
Oが円の中心ならOAとOBは半径だから等しく、△OABは二等辺三角形

325:132人目の素数さん
22/07/31 11:13:58.13 nE4TbzMz.net
俺だったら直接150/2=75と計算するな。
そういう定理あったよね。

326:132人目の素数さん
22/07/31 15:49:44.06 x12MgKyn.net
中学3年です。
ある大学の研究者が、宇宙にある銀河のうち20万個の銀河について自転方向を観測した結果、
完全に均等(50対50)ではなく、その割合は51対49という結果だったそうです。
2%の差と聞くと一見誤差のように思えるかもしれませんが、20万個観測して2%の偏りが出る
確率は0.0000001%以下らしいのです。
つまり、この不均等は偶然ではなく、なんらかの力が作用して不均等になっているというものでした。
前置きが長くなりましたが、これ(20万個観測して2%の偏りが出る確率は0.0000001%以下)
というのはどのような式を使えば計算できるのでしょうか?

327:132人目の素数さん
22/07/31 16:08:58.83 90o/31aC.net
>>317
小中の範囲ではないです

328:イナ ◆/7jUdUKiSM
22/07/31 17:43:55 VCKJ9Q+7.net
>>307
>>317
偏り={|自転軸が右回り-自転軸が左回り|/(自転軸が右回り+自転軸が左回り)}×100(%)

329:132人目の素数さん
22/07/31 18:03:18 KPlFCxDk.net
>>317
バカじゃ?自転方向って
何に対して方向決めるのよ
空間で回転は擬ベクトル表示
その擬ベクトルをどう2つに振り分けるんだ

330:132人目の素数さん
22/07/31 18:51:52 x12MgKyn.net
論文内容は詳しくは覚えてませんが、自転方向というのは地球上の観測所から見て
右・左のどっち回りで回転しているかという意味だったと思います。

331:132人目の素数さん
22/07/31 18:53:47 KPlFCxDk.net
>>321
回転軸が真横なら?

332:132人目の素数さん
22/07/31 18:57:41 KPlFCxDk.net
>>321
それに地球から見てって
逆から見たら逆回転だがや
2%偏ってるって
その定義なら偏りが0%に見える点が
必ず存在するが?

333:132人目の素数さん
22/07/31 19:05:16 nE4TbzMz.net
URLリンク(creators.yahoo.co.jp)

334:132人目の素数さん
22/07/31 19:31:13.37 CQRPXI7R.net
確率p、試行回数Nのベルヌーイ試行で成功の回数をXとするとXの分布はN>>0で平均pN、分散Np(1-p)の正規分布で近似できる
よってrN回以上起こる確率は
P((X-pN)/√(Np(1-p)) > rN/√(Np(1-p)) )
= 1-2erf( rN/√(Np(1-p)))
erfの定義はwikiに載ってるけど初等関数で書けるわけもないので結局大先生にお願いするしかない

335:132人目の素数さん
22/07/31 19:46:49.72 JVdw+OEB.net
>>323
その子に言ってもしょうがないだろう

336:132人目の素数さん
22/07/31 19:49:09.62 JVdw+OEB.net
>>319
それは「偏り」の求め方であって、>>317が聞いている、「偏りが出る確率」の求め方ではない

337:132人目の素数さん
22/07/31 20:29:09.40 S1nkd1Tp.net
左右の定義はどうでもよくて偏りがあることが大事なんじゃないの?

338:イナ
22/08/01 02:07:43.91 cnMfNTri.net
>>319
>>317
偏り=(|自転軸が右回り-自転軸が左回り|/200000)×100=2
|自転軸が右回り-自転軸が左回り|=4000
∴20万個のうち自転軸の違いが4千個差あれば、
当該偏りが出る。

339:312
22/08/01 06:32:27.26 STuMy/mI.net
>>314
>>315
本当だ…二等辺三角形ですね
ありがとうございました

340:132人目の素数さん
22/08/01 16:55:47.72 +oO4DTm/.net
>>317で質問をした者です。
銀河の自転方向の話は、何故この質問をしたかという経緯を説明するために、どこかの大学の
研究者が述べていたことを引用しただけであり、それ自身について私はよく知りませんし
宇宙の事について議論するつもりはありませんでした。
知りたかったのは、例えば確率をx、対象となる個数をa、偏りをbとした時、aとbに
それぞれ値を与えればxが決まる式です。
1億個で3%の偏りが出る確率は?、100万個で1%の偏りが出る確率は? という問題でも、
式があれば個数(a)や偏り(b)が変わっても確率(x)がすぐに出るかと思います。
皆さんの話を総合すると、式を導き出す事はできても、中学で習う数学の範囲ではない
という事なのですね。
色々ご回答ありがとうございました。

341:132人目の素数さん
22/08/02 08:26:26 wiDBno/M.net
所持金の1/4で本を買い、残りの金額の2/5を出して食べ物を買ったら540円残った
はじめに持っていた所持金はいくらか答えろや

342:132人目の素数さん
22/08/02 09:40:16.72 a7tgWHFd.net
1200

343:132人目の素数さん
22/08/02 10:22:32.58 wiDBno/M.net
>>333
正解
URLリンク(i.imgur.com)

344:イナ
22/08/03 02:30:49.66 0aHV3zO+.net
>>329
>>332
3/4の3/5が540円だから、
元の金は540円の(4/3)(5/3)
540×20/9=1200
∴1200円

345:132人目の素数さん
22/08/03 15:34:50.28 RfGxYzwd.net
正解が書かれてるのに答えを示したがる人の気持ちがわからない

346:132人目の素数さん
22/08/03 16:22:25.52 ixDyH/8r.net
>>336
俺はお前と違って分かる。

347:132人目の素数さん
22/08/03 16:51:01.55 a3aVkVqz.net
自己満足?

348:132人目の素数さん
22/08/03 16:58:43 RfGxYzwd.net
文章問題解ける俺カッケーと?

349:132人目の素数さん
22/08/03 17:04:40 ixDyH/8r.net
>>339
取り敢えず人の気持ちが分からないのは最低なので分かるようになれよ。

350:132人目の素数さん
22/08/03 17:06:56 RfGxYzwd.net
本心見透かされて激おこ?

351:132人目の素数さん
22/08/03 17:22:10 ixDyH/8r.net
>>341
見透かしている人間→分かる
見透かせていない人間→分からない

区別できないのか。
お前が馬鹿なのは分かる。

352:132人目の素数さん
22/08/03 17:36:25 RfGxYzwd.net
もういいよ、思いっきりお見通しだよ
浅ましいところを見透かされて悔しいんでしょ?最初からわかってたけど
傷付くかと思って遠回しに書いてたのにw

353:132人目の素数さん
22/08/03 18:25:25 ixDyH/8r.net
悔しいとか全くない
人の気持ちが分からないというところを批判している

354:132人目の素数さん
22/08/03 18:26:26 ixDyH/8r.net
人の気持ちが分からないということを平気で書き込み、馬鹿を晒すのはやめよう

355:132人目の素数さん
22/08/03 18:27:33 ixDyH/8r.net
>>343
結局、後から書き込む人間の気持ちが分かったのか?

356:132人目の素数さん
22/08/03 18:30:15 ixDyH/8r.net
>>339
文章題に限った話ではなく他の分野でも後出しは有り得る。

後出しが格好いいということは無いので、後から書き込む人間の気持ちが分かっているということの証明にはならない。むしろ全く分かっていない。

357:132人目の素数さん
22/08/03 20:13:16.20 RfGxYzwd.net
人の気持ちがわかる人間になれと言ってて
人をバカ呼ばわりするってどういう気持ちなんだろう
バカだから教えてください(笑)

358:132人目の素数さん
22/08/03 23:52:02.85 bgadFIph.net
>>348
教えない。
小学生・中学生レベルの推察力さえも無いお前には「俺(他人)から教わる資格」が無い。親から教われと言いたいところだが、そもそもお前の親の教育が悪そうなのでそれをしたところでどうにもならないかもな。お前は馬鹿親の犠牲者なのかも知れない。親子揃って馬鹿。

359:132人目の素数さん
22/08/04 02:00:25 JNkykMa9.net
この程度の事で浅ましいとか言って嘲笑する人間がいるから
欧米人から「日本人には質問しても嘲笑したら侮蔑するばかりで教えてくれない人が結構多い」とか言われんだ屑野郎
それに相手は、もう長いこと働けてない稲さん45歳だろ、自己認識確認が必要なくらいの人である事も一目瞭然
人の答えをマウンティング清書行為してるわけじゃない事も明白で
それこそ何で見透かしてる見透かしてる連呼しといて分かんねぇんだか
トンだ見透かしてるアピールだ事

逆に擁護してる奴も別に躍起に成って分かるとか言う迄は良かったが
侮蔑まる出しで反論なんて呆れられる真似すんな屑野郎

何で屑野郎が3人も居るんだよ?屑野郎なんて俺1人が居るだけでも定員オーバーだろ

360:132人目の素数さん
22/08/04 07:30:45.92 4dd/YMkI.net
>>340
先生とりあえず>>335がどういう気持ちなのか教えてください。

361:132人目の素数さん
22/08/04 10:53:25.35 as1UrL8s.net
日本人に愚弄されて○○人が火病ってんだろw

362:132人目の素数さん
22/08/04 12:19:15.79 fZgHnTzl.net
>>351
俺は教えない。親から教われ。

363:132人目の素数さん
22/08/04 12:27:07.37 fZgHnTzl.net
馬鹿 : ~する人の気持ちが分からない
俺 : ~する人の気持ちが分かる。分からない馬鹿は恥ずかしい。それを他人から教わろうとするな。親から教われ。どうせ親も似たような(人の気持ちが分からない)馬鹿だろうけどな。
論点1 : 人の気持ちが分からない=馬鹿
論点2 : 人の気持ちを他人に聞こうとする=馬鹿
論点3 : 馬鹿家庭における馬鹿の連鎖

364:132人目の素数さん
22/08/04 13:24:10.66 iY6kO7TZ.net
そのバカを相手に天狗になってる自称賢い人(大笑)

365:132人目の素数さん
22/08/04 14:09:59.91 4dd/YMkI.net
>>354
あなたは私の気持ちがわからないのですか?
あなたを馬鹿にしているのですよw

366:132人目の素数さん
22/08/04 14:58:02 ikrzqukx.net
>>356
やり取りを読み返してみろよ笑

馬鹿が体勢を立て直そうとしてももう遅い。馬鹿は状況把握が遅いんだよな

367:132人目の素数さん
22/08/04 15:57:10.78 iY6kO7TZ.net
>>335
こいつが痛いところを突かれて発狂したんだろな

368:132人目の素数さん
22/08/04 16:27:48.70 3kp3/GWI.net
>>358
そういう邪推が馬鹿の証拠
俺はそいつではない

369:132人目の素数さん
22/08/04 16:36:30 3kp3/GWI.net
>>341,343,352, 358 ・痛いところを突かれた ・発狂している これらの浅い推量笑 確かに人の気持ちが分からない馬鹿(ども)だけある ちなみに俺は後出しする人間の気持ちが分かるとは言っているが後出しすることの正当化はしていない



371:132人目の素数さん
22/08/04 17:07:59 prSZVUzB.net
お前は俺の気持ちが全く分かってない

372:132人目の素数さん
22/08/04 17:19:49.75 3kp3/GWI.net
この馬鹿は「横から擁護するのはおかしい、本人だろう」と浅い推量をした。浅いだけでなく間違いだ。
俺は後出しの擁護をしていないし「人の気持ちが分からない馬鹿」を叩いているのだが、この馬鹿は自分が馬鹿だと言われたことに対して意識的か無意識か逃げるだけ笑
この馬鹿の浅いものの見方や単純な感情はよく分かる。全く分かっていないということは全く無い。

373:132人目の素数さん
22/08/04 17:24:42.50 iY6kO7TZ.net
ただいま発狂中です、暫くお待ちください

374:132人目の素数さん
22/08/04 17:30:02.47 sAEz9gzS.net
>>363
つまらない煽り

375:132人目の素数さん
22/08/04 17:31:51.65 sAEz9gzS.net
まあ徹底的に叩いて痛みを植え付けてこの馬鹿に忘れられない思い出を作ってやれたのは愉快なことだ。

376:132人目の素数さん
22/08/04 17:33:26.89 sAEz9gzS.net
もう一度復習しておこうか
>>336
馬鹿なお前には分からないだろうな。俺には分かる。

377:132人目の素数さん
22/08/04 17:33:57.53 sAEz9gzS.net
>>339
違うな。格好良くは無い。

378:132人目の素数さん
22/08/04 17:36:17.27 sAEz9gzS.net
>>341
その浅い推量が馬鹿の証拠なんだよ。
「理解力が低い馬鹿のお前2対する軽蔑の気持ち」齒あるが激おことか無い。間違い。

379:132人目の素数さん
22/08/04 17:37:37.42 sAEz9gzS.net
>>343
完全なる勘違い。馬鹿は間違えた状態でいることに苦痛を感じないから楽でいいな

380:132人目の素数さん
22/08/04 17:38:26.21 sAEz9gzS.net
>>352
馬鹿はこういう思考をする、という見本を示しているな。

381:132人目の素数さん
22/08/04 17:39:36.45 sAEz9gzS.net
>>356
馬鹿にしたいが出来ていないという、お前みたいな低レベル側の人間の苛立ちだな

382:132人目の素数さん
22/08/04 17:39:57.39 sAEz9gzS.net
>>358
思考停止の典型的なレス。

383:132人目の素数さん
22/08/04 17:40:31 sAEz9gzS.net
>>361
分かっている。俺は書いている。

384:132人目の素数さん
22/08/04 17:40:47 sAEz9gzS.net
>>363
残念な定型文。

385:132人目の素数さん
22/08/04 17:44:58 sAEz9gzS.net
>>363
前から疑問なのだが発狂している人間が論理的な文章を書き込むことって可能なのか?

「発狂」という言葉を調べてからこの質問に答えろ

386:132人目の素数さん
22/08/04 18:00:54 iY6kO7TZ.net
とりあえず「くもん式中学一年基礎固め」は比例式以外やり尽くした
最初はどうしようもないくらい理解できなかったけど、繰り返しやってたらすらすら解けるようになったから
やっぱ継続って大事だよね

387:132人目の素数さん
22/08/04 18:37:59.15 rBqaj79M.net
>>376
頭の悪い人間が今更中1の基礎固めとはな笑
やるだけ無駄、やらない方がマシの見本

388:132人目の素数さん
22/08/05 08:53:54.47 Q567GpH9.net
>>377
できないことができるようになるのは
一般的には無駄とは言わない

389:132人目の素数さん
22/08/05 12:08:11.78 coM9buZY.net
>>378
「今更」を踏まえて答えないと間違い。勝手に一般性を加えるな。
この馬鹿が中1の基礎固めをするのは無駄。

390:132人目の素数さん
22/08/05 13:48:44.98 6/GQHt53.net
>>379
どうした?何か悩みでもあるのか?つらいことでもあったか?
聞いてやるから言ってみな。

391:132人目の素数さん
22/08/05 16:43:09.30 mpQF2YpW.net
>>380
何だこの馬鹿。

392:132人目の素数さん
22/08/05 16:48:35.78 hi8MiSiZ.net
>>380
みっともない所を思いっきり指摘されて収まりがつかず、意気がって吠えてるだけの可哀想な人なんだよ、そっとしておやり

393:132人目の素数さん
22/08/05 16:57:40.72 mpQF2YpW.net
>>382
同じことを繰り返す馬鹿。
みっともないところを見せたのはこの馬鹿だ。誤魔化そうとしても無理笑

394:132人目の素数さん
22/08/05 17:00:45.17 mpQF2YpW.net
繰り返すか俺は「後出しをした人間とは別人」なので指摘が俺の方に₃向かっていない
完全論破されて悔しいのは分かるが逃さないぞ笑

395:132人目の素数さん
22/08/05 17:03:12.92 mpQF2YpW.net
>>378
馬鹿の自覚を促したいのだが
お前は自分が馬鹿であることが俺の指摘により理解できたかな?
それとも馬鹿だから理解出来てないかな?

396:132人目の素数さん
22/08/05 17:12:57.98 hi8MiSiZ.net
でも他人からの書き込みに誰よりも反応してんのあんたじゃないか
嫌な事を言われても心当たりが無いなら堂々と構えてスルーすれば良いんじゃね?
感情的ではない正論の反論お待ちしております

397:132人目の素数さん
22/08/05 17:18:19.20 VTZLAmWY.net
>>386
>嫌な事を言われても心当たりが無いなら堂々と構えてスルーすれば良いんじゃね?
これは、お前が馬鹿だから俺からの反論を恐れて「スルーして欲しい」という願望。
間違いや馬鹿の指摘をお前に阻害されることなく(スルーすることなく)、俺は自由に書き込む。

398:132人目の素数さん
22/08/05 17:22:13.09 VTZLAmWY.net
>>382
このレベルの馬鹿が俺に何か言ってくるとか、スゲーなと思う。この馬鹿に馬鹿の自覚を持たせたいね。

399:132人目の素数さん
22/08/05 17:25:50.33 VTZLAmWY.net
>>376
お前はつける薬の無い、救いようのない馬鹿。中1の数学とかやっても無駄だからやめとけ笑
そもそも中1の数学をやったぐらいで喜んで報告しなくてよろしい

400:132人目の素数さん
22/08/05 17:35:14.58 6/GQHt53.net
>>381
よしよし。恐がらなくていいよ。君を傷つける悪いやつは相手にしなくていいんだ。
おれは味方だから、なんでも話してごらん。

401:132人目の素数さん
22/08/05 17:39:20.66 VTZLAmWY.net
余りに頭の悪い人間を発見し、この馬鹿をイジってやろうと考えた。馬鹿が乗ってきた。
馬鹿は自分がなぜ標的にされたのか理解できず「自分の発言が何か俺の気に障った(痛いところをついた)のか」と馬鹿な推論をしているが的外れ。
→今ここ

402:132人目の素数さん
22/08/05 17:44:25.72 6/GQHt53.net
>>391
なるほど!よく分かった。君は凄いな!
そんな賢い君を馬鹿にするやつなんてほっとけよ。

403:132人目の素数さん
22/08/05 17:45:45.89 VTZLAmWY.net
>>392
いやだ

404:132人目の素数さん
22/08/05 17:47:27.29 VTZLAmWY.net
瞬発力とごまかしで逃げ切ろうとする馬鹿を中期~長期戦で潰すのは楽しい。

405:132人目の素数さん
22/08/05 17:59:37.95 VTZLAmWY.net
むしろ痛いところを突かれたら俺は引っ込むかもしれない。しかし的外れな、馬鹿の反論は放っておけない笑
馬鹿にはこの2つ(的確な指摘と的外れな馬鹿の指摘)の大きな違いが分からないようだ。

406:132人目の素数さん
22/08/05 18:09:55.01 abfPFjU0.net
矢張り俺の気持ちが全く分かってなかったな

407:132人目の素数さん
22/08/05 18:15:08.93 VTZLAmWY.net
分からないと言い張っても無理
馬鹿の単純な気持ちなど簡単に分かる

408:132人目の素数さん
22/08/05 18:28:40 VD1ovWDW.net
展開公式と乗法公式って同じものですか?

409:132人目の素数さん
22/08/05 18:54:05.20 YidmT80f.net
はい

410:132人目の素数さん
22/08/06 06:13:45.53 r/y1uIL8.net
精神的勝利か、かっこいいな

411:132人目の素数さん
22/08/06 13:46:54.46 6YAVmE5u.net
>>400
>>精神的勝利か、かっこいいな
「はい論破」と言ってみたい?

412:132人目の素数さん
22/08/06 16:37:08.59 aTkbCuqz.net
うるせー黙ってろハゲ

413:132人目の素数さん
22/08/06 16:37:18.87 Tr5jKUMV.net
>>376で平然とド屑な事を言っといて平然と自分が普通みたいに相手を侮蔑してんじゃねぇ
ずっと侮蔑ばかりじゃねぇかテメェは

414:132人目の素数さん
22/08/06 18:28:35.21 6YAVmE5u.net
いろんなセリフが言えるんだ

415:132人目の素数さん
22/08/06 18:43:53.83 k7r/7JyK.net
>>306


416: それは恒等式じゃないのか?



417:132人目の素数さん
22/08/06 18:44:48.26 k7r/7JyK.net
>>400
精神統一 というと 壺売りみたいだな。

418:132人目の素数さん
22/08/06 19:59:55 cGLeJDhL.net
>>405

0x=0
(1-1)x=0
x-x=0
x=x

419:132人目の素数さん
22/08/07 07:35:54.36 1aJUQ/zL.net
それ意味ないね

420:132人目の素数さん
22/08/07 07:38:21.01 tR1Ce6nD.net
>>408


421:132人目の素数さん
22/08/07 08:26:07.89 cq3wTAsI.net
6√56/2√7=

422:132人目の素数さん
22/08/08 17:32:57.49 SwZV6/Eu.net
>>410
6√2

423:132人目の素数さん
22/08/08 18:27:19.99 Pmv//iaP.net
>>408
正しくは無意味解ではなく不定解(不定常の意ではなく不確定の意)と言う。全ての実数が解候補と成る為。一方で
0x=1
の様に全ての実数が解候補と成らない例を不能と言う。
「任意の~」って単語を用いず「全ての~」って単語を用いたのはこの小中学生が行き交うスレに沿ぐわない気がした為。

424:132人目の素数さん
22/08/12 08:47:40.42 hm/e5aNr.net
中1ドリル、平面図形の項です
次の文の正誤により○または✕を付けよと言う問題です
(3)平行な平面に、1つの平面が交わると、その交わりは平行になる
これについて、例えば平行な平面A,Bがあるとして、そこに平面Pが交わる場合、垂直や斜めの可能性もあると思い「✕」としたのですが、答えは「○」でした
解説がないので何故そうなのか解りません

425:132人目の素数さん
22/08/12 09:06:52.36 e6KixzhE.net
>>413
交わりはPの上にあるのでねじれではない。かつA, Bの上にあるので交差しない。残るのは並行。

426:132人目の素数さん
22/08/12 12:57:26.52 hm/e5aNr.net
>>414
すみません、よく解りません
平行な面A,Bがあるとして、それは真横から見たら「=」の様になっていると考えているのですが違うんでしょうか
そこに平面Pが交わるとき、例えば垂直に交われば「土」の様になる可能性があるんじゃないかと…

427:132人目の素数さん
22/08/12 13:37:17.16 0bTv7b8D.net
「士」のようになっていても、交わりの直線部分だけを、平面的じゃなくて「立体的に」注目すれば平行になっていますよ。

428:132人目の素数さん
[ここ壊れてます] .net
>>415
土の交わりは:の部分だから平行だと思います

429:132人目の素数さん
22/08/12 16:53:07.16 /PnQrKCC.net
>>415
それは面同士が交わっている部分ではなく直線同士が交わっている部分を見てしまっているからです。土という字は面3つではなく線3本でできていますよね。その見方だとむしろ平行には絶対になりません。
直線同士が交わっている部分ではなく面同士が交わっている部分を見てください。2本の直線が表れているはずです。その2本の直線は必ず平行です。

430:132人目の素数さん
22/08/12 17:04:50.51 fW8LBtkr.net
>>414
数学的帰納法的な考え方?素晴らしい。

431:132人目の素数さん
22/08/12 22:40:02.32 nLyxjQNz.net
>>415
空間での直線の位置関係は、まず交わるか否かで大別される。交わらない場合、2直線が同一平面上にあれば平行、同一平面上になければねじれ。
例題の場合、平面AとB上の2直線は交わることはなく、ともに平面P上(同一平面)にあるので平行。
>>419
全然帰納法じゃない。ただの消去法。

432:415
[ここ壊れてます] .net
>>417-420
遅くなりすみません

>直線同士が交わっている部分ではなく面同士が交わっている部分を見てください。2本の直線が表れているはずです。その2本の直線は必ず平行です。

この説明が特にわかり易かったです
納得しました
ありがとうございました

433:132人目の素数さん
22/08/15 19:36:59.74 bV9XVgQa.net
整数の問題おねがい

434:132人目の素数さん
22/08/16 16:20:06.68 Kz6kHZGl.net
>>256
> 「父40歳、母37歳、本人12歳、弟(または妹)10歳問題」もある(これは複数の問題点を含む)。
これは何が問題なんだ?

435:132人目の素数さん
22/08/17 13:50:40.36 Z+hbZR47.net
>>423
独身の人たちに対する配慮がない

436:イナ
22/08/17 17:43:04.87 g7IMMzkg.net
>>335
>>423
子供ぎらいの女性に対して敵意をあらわにしていると受けとめられかねない。

437:132人目の素数さん
22/08/18 05:56:57.10 ByYU0lgJ.net
それツイッター等でよく見るフェミニズム気取りの過激派、通称ツイフェミだろ
あまりにも横暴過ぎて世界的なフェミニズム団体が苦言を呈される集団的自分勝手ぶり
世界的なフェミニズム団体からNoを突き付けられたツイフェミ等に配慮する必要は無い

438:132人目の素数さん
22/08/19 08:55:11.66 7I5Ny1TB.net
すみません、確率の計算を数年ぶりにしているのですが、
□一度の抽選で、以下の5つの抽選がある時
A.20%で当たり
B.5%で当たり
C.5%で当たり
D.5%で当たり
E.1%で当たり
このうち、いずれか2つの当たりを引ける確率ってどう計算すればいいですか?

439:132人目の素数さん
22/08/19 09:01:39.14 7I5Ny1TB.net
追記
毎回引いたくじは戻す前提です

440:132人目の素数さん
22/08/19 09:21:54.25 3co4K/OY.net
これってC使う奴かな

441:132人目の素数さん
22/08/19 09:26:04.82 3co4K/OY.net
もしくは
2つの当たりを引ける確率の逆くを計算する方法かな。
連続で当たる確率とハズレの確率
を先に計算して・・・。

442:132人目の素数さん
22/08/19 09:39:18.78 DcrpbdxY.net
P(全ハズレ) = (84/100)ⁿ
P(ハズレとAのみ引く) = (84/100)ⁿ
∴ P(ハズレとAのみ引くが全ハズレではない) = (84/100)ⁿ - (84/100)ⁿ
...
を足す

443:132人目の素数さん
22/08/19 10:23:14.92 7I5Ny1TB.net
Cって高校数学でしたっけ
全然覚えてないや…

444:132人目の素数さん
22/08/19 10:51:16.13 3co4K/OY.net
答えは1.36%かな

445:132人目の素数さん
22/08/19 12:29:07.32 7I5Ny1TB.net
>>433
マジっすか!
自分の計算と全然違うな、どうしてだろう…

446:132人目の素数さん
22/08/19 12:44:59.81 hWmkDOJw.net
>>427
抽選回数も分からないし、2回のみなのか2回以上なのかも分からないので求められない。

447:132人目の素数さん
22/08/19 13:09:04.24 3co4K/OY.net
>>434
私も全く自信ないので。正解なら計算式出そうと思ったけど。

448:132人目の素数さん
22/08/19 13:29:40.53 hWmkDOJw.net
>>427
もしかしてA~Eがそれぞれ独立して1回ずつ抽選するってこと?だったら追記の
>毎回引いたくじは戻す前提です
の意味が通らないよね。

449:132人目の素数さん
22/08/19 13:52:12.85 cYLscWxE.net
>>427
一度の抽選で5つの抽選とか、追記で突然くじが出てきたりとか、言葉がよく分からない。
問題文そのままが知りたい。

450:132人目の素数さん
22/08/19 14:38:16.38 hWmkDOJw.net
>>437
ちなみに独立抽選で2個だけあたりなら3.5245%

451:イナ
22/08/19 16:35:04.07 cWAqEq6D.net
>>425
>>427
3(0.2・0.05・0.95^2・0.99)+(0.2・0.95^3・0.01)+2(0.8・0.05^2・0.95・0.99)+3(0.8・0.05・0.95^2・0.01)+0.8・0.95・0.05^2・0.99
=0.035245
∴3.5245%

452:132人目の素数さん
22/08/19 16:38:25.33 3co4K/OY.net
>>427は2回連続して引いてA-Eがダブらないように当たる確率を求めよという意味だと思えたけど違うのか!

453:132人目の素数さん
22/08/19 17:45:23.18 boDSCyK6.net
よくよく読んだら一度の抽選でって書いてあるな
一度の抽選で二回当たるとか意味が分からん
相手する必要ないな

454:132人目の素数さん
22/08/19 21:54:43.07 Dm6BKmYh.net
2種類の当たりがダブって当たるって話じゃないの?

455:132人目の素数さん
[ここ壊れてます] .net
一度の抽選でABCDEの5種類のくじを一つずつ引くことができる。
それぞれの当りの確率は>>427

5種類のくじのうち当りが


456:二つの確率を求めたい。 てことか。くじだと中身が減るので毎回戻すとか言ってるんだろうと 思うが、当りの本数じゃなくて当りの確率を言っているので確率は >>427のまま変わらないと考えておけばよかろ。 AB当りで他外れ、AC当りで他外れ、以下略でそれぞれの確率を 求めればいいんじゃないか(最後に合算)と思った。



457:132人目の素数さん
22/08/19 22:43:24.65 kVSXOGCH.net
思うとかなんとそんなのエスパーできるハズもないし
自分が疑問に思った事、どう相手に伝えたらいいかすらわからんアホ相手にするだけ無駄

458:132人目の素数さん
22/08/20 01:03:40.76 QnwQTS3B.net
まあまあw
ホントは問題文を細部まで記載してくれれば一番だけどね。
でも、細部の認識が甘いってのがこの一連のやりとりでわかるカンジ。
そうは言っても俺も時々やらかすからなあ

459:132人目の素数さん
22/08/20 07:27:11.99 vGos2Zv/.net
みんな読解力ないなあ。たぶん俺が正解。

460:132人目の素数さん
22/08/20 10:37:55.47 KedoZxTW.net
通常攻撃時、25%の確率で、スキルAが発動。25%の確率で、スキルBが発動。AとBは同時に発動する事もある。 何も発動しない確率、片方のみが発動する確率、二つとも発動する確率を知りたいです。
自分でも調べましたが、 全く分かりませんでした。どのような計算式を行うか、教えて頂けないでしょうか?

461:132人目の素数さん
22/08/20 11:57:06.06 Ffsr8CIV.net
>>447
書いてないことを勝手に予想することを読解力とは言わない。

462:トド
22/08/20 14:47:59.07 nQMTJGI5.net
>>440
>>448
A=0.25
B=0.25
A∩B=0.25^2=1/16=0.0625
 ̄A∩ ̄B=0.75^2=(3/4)^2=9/16=0.5625
A∩ ̄B=0.25・0.75=3/16=0.1875
= ̄A∩B
6.25%+56.25%+18.75%+18.75%=100%
ベン図を描くと4つの領域に分けられる。

463:トド
22/08/20 14:57:57.30 wuptiBjq.net
>>450
>>448
何も発動しない確率56.25%
片方のみが発動する確率18.75+18.75=37.5(%)
二つとも発動する確率6.25%

464:132人目の素数さん
22/08/20 15:11:28.09 CLhLDV0D.net
>>448
何も発動しない確率。
 → スキルAが発動せずスキルBも発動しない確率と言い換えられる。
 → 75%(0.75) × 75%(0.75) = 56.25%(0.5625)
二つとも発動する確率
 → スキルAが発動しスキルBも発動する確率と言い換えられる。
 → 25%(0.25) × 25%(0.25) = 6.25%(0.0625)
片方のみが発動する確率。
 → スキルAが発動しスキルBは発動しない、またはスキルAが発動せずスキルBは発動する確率と言い換えられる。
 → 25%(0.25) × 75%(0.75) + 75%(0.75) × 25%(0.25) = 37.5%(0.375)
 別解
 → スキルAかスキルBの少なくともどちらかが発動しかつスキルAとスキルBの両方は発動しない確率と言い換えられる。
 → 100%(1) - 56.25%(0.5625) - 6.25%(0.0625) = 37.5%(0.375)

465:132人目の素数さん
22/08/21 14:30:22.31 wbNaSVK7.net
すいません、サイコロを使った質問なんですが、
サイコロ2つ別々に投げた時
両方とも6が出て目の合計が12になる確率は1/36ですよね?
そこでサイコロを同時に2つ投げた場合
目の合計は2~12の11種で1/11の確率で両方とも6の目が出るとなるのですが
確率が変わった気がするのですが何故でしょうか?
解りにくくてすいません。

466:132人目の素数さん
22/08/21 14:57:06.86 JY7CQtil.net
>>453
11通りが等しい確率で出るわけじゃないから
2と12は最も確率が低くてそれぞれ1/36
7が最も確率が高くて6/36 = 1/6
同時か別々かは全く無関係

467:132人目の素数さん
22/08/21 16:42:28.52 JY7CQtil.net
補足
12は6と6を出すしかない → 1/36
7は1と6でも2と5でも3と4でも4と3でも5と2でも6と1でも良い → 6/36 = 1/6

468:132人目の素数さん
22/08/21 16:48:11.69 xtVAXSBJ.net
>>453
同時でも別々でも二つの目�


469:ヘ 1と1 1と2 ~ 6と5 6と6 のどれかで36の組合せ(目の出方)がある。 例えば目の合計で4になるのは 1と3、2と2、3と1の3通りで確率は3/36(=1/12)。合計が12になるのは6と6の一通りで確率は1/36。



470:132人目の素数さん
[ここ壊れてます] .net
九九で、積が一桁の数になる場合のみ「が」が入ります。
 (にさん「が」ろく、 しちいち「が」しち、はっさんにじゅうし など)
これはなぜなのでしょう?

471:132人目の素数さん
22/08/25 00:05:55.36 jsh3eaM7.net
>>457
積が二桁なら必ず じゅう が入るから
じゅう の代わり

472:132人目の素数さん
22/08/25 06:33:07.98 gdwi0Wo+.net
語呂が良いからか。

473:イナ
22/08/25 11:07:25.84 ixrXPJ2U.net
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;にんにきにきにき♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;にんにきにきにき♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;ににんがさんぞ♪;;;;;;にんにきにきにき♪;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;にんにきにきにき♪;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;にし〜がごくう♪;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;/ ∩∩∩∩ ̄/\;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;/((^o`^。^)) /「;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;/っц' υ⌒υ//|;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖ ̄UUυυ ̄‖ |;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖ □ □  ‖ |;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖________‖/|;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖ ̄ ̄ ̄ ̄ ‖ |;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖ □ □ ‖ |;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;/‖________‖//|;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;‖ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;‖  □  □  □  ‖ |;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;/‖_____________‖//|;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;‖ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖   |;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;‖ □ □ □ □ □ ‖ / |;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;‖ ________________‖ ;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;‖;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;∩∩;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∩∩;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;(_ _ )`⌒つ;;;;;;;;;;;;;;;;;;;;(_ _ )`⌒つ;;;;;;;;;;;;;;;
;;;;;;;∪;;;;;∪;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∪;;;;;∪;;;;;;;;;;;;;;;;;;;;;;;;
>>451

474:132人目の素数さん
22/08/25 11:50:01.24 gdwi0Wo+.net
x5乗-x4乗-1
を因数分解せよ

475:132人目の素数さん
22/08/25 12:38:01.84 rw8UxP8n.net
URLリンク(www.wolframalpha.com)

476:イナ
22/08/25 14:14:23.19 ixrXPJ2U.net
>>460
>>461
x^5-x^4-1=(x^5-1)-x^4
=(x-1)(x^4+x^3+x^2+x+1)-(x^2)^2
=[√{(x-1)(x^4+x^3+x^2+x+1)}+x^2][√{(x-1)(x^4+x^3+x^2+x+1)}-x^2]
=[√{(x-1)(x^4+x^3+x^2+x+1)}+x^2][4乗根√{(x-1)(x^4+x^3+x^2+x+1)}+x][4乗根√{(x-1)(x^4+x^3+x^2+x+1)}-x]
x=0のとき極大値-1,x=4/5のとき極小値-5/4

477:イナ
22/08/28 05:24:05.91 o+A5klKp.net
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;にんにきにきにき♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;にんにきにきにき♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;ににんがさごじょ♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;にんにきにきにき♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;にんにきにきにき♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;にし〜がはっかい♪;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;/ ̄ ̄ ∩∩ ∩∩  ̄ ̄/\;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;/   ((^。`^o^))  /「;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;/   っц' υ⌒υ  //|;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖  ̄ ̄ ̄UUυυ ̄ ̄ ‖ |;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖  □ □ □ □  ‖ |;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖________‖/|;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖  □ □ □ □  ‖ |;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖________‖/|;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;‖  □ □ □ □  ‖ |;;;;;;;;;;;;;;;
;;;;;;;;;;/‖________‖/ /|;;;;;;;;;;;
;;;;;;;;;;‖  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |;;;;;;;;;;;
;;;;;;;;;;‖  □  □  □  □  ‖ |;;;;;;;;;;;;
;;;;;;;/‖__________‖/ /|;;;;;;;;
;;;;;‖ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |;;;;;;;;;
;;;;;‖   □  □  □  □  □  □  ‖ 彡ミ、;;;;;;
;;;;;‖_____________‖川` , `; ;;;;;;
;;;;;‖;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖/U⌒U、;;;;;;
;;;;;;;;;∩∩;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∩∩;;;;;;~U U~;;;
;;;;;;;(_ _ )`⌒つ;;;;;;;;;;;;;;;;;;;;;(_ _ )`⌒つ;;;;;;;
;;;;;;;∪;;;;;∪;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∪;;;;∪;;;;;;;;;;;;;;;;;
>>463

478:132人目の素数さん
22/08/31 11:39:04.39 +oLRhx6q.net
log_3(6) と log_4(7) の大小判断はどうすれば判断できますか

479:132人目の素数さん
22/08/31 12:49:04.37 3CBphs8E.net
底を揃える

480:132人目の素数さん
22/08/31 13:13:00.72 sPjjb5JP.net
log_3(6/3)>log_4(6/3)>log_4(7/4).

481:132人目の素数さん
22/08/31 15:23:57.43 WWkJLALu.net
log(x+3)/logxは単調減少

482:132人目の素数さん
22/08/31 17:22:22.88 H/vzzDGk.net
>>465
小中学校範囲外

483:イナ
22/08/31 22:41:17.90 TNgVs1pb.net
/_/人人_/_/_人人_/_
/_(_^_)/_/_(_)_)_/_
/_(^o^))/_/(^) ) _/_
/_(_υ_)┓_/(_υ_)┓_/_
/◎゙υ┻-◎゙◎゙υ┻-◎゙/_
/_キコキコ……/_キコキコ……_
/_/_/_/_/_/_/_/_/_/_/_/
>>464

484:132人目の素数さん
22/09/01 00:14:55.67 be0oANlh.net
>>467 あっさり終わって感動的です。ありがとうございました。

485:132人目の素数さん
22/09/01 13:56:39.42 VwFKqDtn.net
> 彼らはよく、社会に貢献したいと口にする。
> なんでも社会悪のネトウヨを自殺に追い込むことが、社会に貢献することなんだそうで。
> イジメや嫌がらせで社会に貢献できる教師や警官になるために、あえて帰化したんであって、祖国同胞を裏切ったわけではなく、心は●●人なんだそうだ。
> 
> 昔は帰化すると裏切り者と呼ばれたりしたが、祖国に国籍を残したまま帰化する方法が確立された現在では、社会に貢献するためにむしろ帰化することが推奨されている。
> 拳銃所持で前科のある生粋の反日家ですら、今では普通に帰化している。
> 
> ●●学会などはネトウヨ認定した日本人を盗撮して、痴漢の写真だと言ってばらまいている。
> それらの写真は、集団ストーカーに使用される。
> 彼らは集団ストーカーを、[地域で子供を守る安心安全パトロール]と称している。

486:132人目の素数さん
22/09/03 13:58:27.67 mbyzRkzx.net
中学三年生の数の規則性の問題です。
[エ]と[カ]が分かりません。[ウ]がmの2乗-3、[オ]が(m-1)の2乗+1なのは分かったのですが、「m行目のn列目」や「n行目のm列目」の求め方が分かりません。
解答は[エ]がmの2乗-(n-1)、[カ]が(m-1)の2乗+nです。[ウ]と[オ]を利用して解く流れだと思いますが、3がn-1になり、+1が+nになるのはなぜですか。文字で考えるのが苦手なので具体的な数値を代入して考えたほうがいいですか。よろしくお願いします。
URLリンク(imepic.jp)
URLリンク(imepic.jp)

487:132人目の素数さん
[ここ壊れてます] .net
>>473
3がn-1
4列目のとき3. では5, 6,7, n列目のときは?

+1が+n
一行目のとき+1. 2,3,4,n行目のときは?

488:132人目の素数さん
[ここ壊れてます] .net
>>473
1列目第m 行には m^2 が並んでる
そこから1列増える毎に1減るから
n列目つまりn-1列増えた位置では
m^2-(n-1)

489:132人目の素数さん
[ここ壊れてます] .net
>>473
1行目第n番目には
1列目第n-1番目の数の次
つまり2^(n-1)+1が並んでいる
1行増える毎に1ずつ増えるから
第m行つまりm-1行増えると
2^(n-1)+1+(m-1)

490:132人目の素数さん
[ここ壊れてます] .net
これさ並べ方を縦横変えて
149
238
567
にしたのと足して2で割ると
137
337
777
になること使えばも少し簡単かも?
いやそんな簡単でもないか

491:132人目の素数さん
22/09/03 16:12:44.21 mbyzRkzx.net
すみません、説明してもらって有り難いんですがまだ分かりません。
>>474さんのいう通り代入すると、4列目-3、5列目-4、6列目-5だからn列目は(n-1)は理解できました。次のn行目のm列目はどのように代入したらいいですか。1行目の1列目、2列目…は(m-1)の2乗+1に代入すればいいですが、2行目の1列目以降はどう考えたらいいですか。>>476さんの言ってることがよく分からないです。理解力がなくてすみません。具体的な数値を代入し、それを文字で置き換えて理解することはできる問題でしょうか。よろしくお願いします。

492:132人目の素数さん
22/09/03 17:03:41.17 D1wy6XX4.net
>>478
列を固定してみる。たとえば5列目の1行目がわかったら2, 3, 4行目はどうなる?

493:132人目の素数さん
22/09/03 17:42:38.71 mbyzRkzx.net
>>479
5列目の1行目は17
2行目は18(


494:+1)、3行目は19(+2)、4行目は20(+3)、よってn行目は+(n-1)→(m-1)の2乗+1+(n-1)を整理して(m-1)の2乗+n ということでしょうか。



495:132人目の素数さん
22/09/03 17:57:01.43 NEMwayr7.net
>>478
1列目のn-1番目には(n-1)^2があるよ
だから1行目のn番目には(n-1)^2+1でしょ
m行目(ただしm<n)はm-1行下だから
それだけ増えて(n-1)^2+1+(m-1)

496:132人目の素数さん
22/09/03 18:10:57.50 D1wy6XX4.net
>>480
そうです

497:132人目の素数さん
22/09/03 20:26:30.60 mbyzRkzx.net
>>481
>>482
ありがとうございます!481さんの解き方も理解できるように頑張ります。

498:132人目の素数さん
22/09/03 21:59:01.91 k9l0v1Ud.net
Oを中心とする中心角180度未満のおうぎ形OAB在る。
その弧上に点P取る。弦ABと半径OPの交点Qする。
AQ=8、BQ=5になりまたOQ:QP=2:1なった。このときOP長さはいくらか。
答えは6√2なるらしいですが途中式どうなりますですか。

499:イナ
22/09/03 22:35:55.59 HSKAARnD.net
>>470
>>484
OP=OA=OB=pとおくと、
(64+p^2-4p^2/9)/(2・8・p)=(25+p^2-4p^2/9)/(2・5・p)
5(64+5p^2/9)=8(25+5p^2/9)
64+5p^2/9)=8(5+p^2/9)
64-40=p^2/3
p^2=72
p=6√2
∴OP=6√2

500:132人目の素数さん
22/09/04 09:28:25.81 5lwIgMIf.net
>>484
OQ=2k, QP=k とおく。円の半径は3k 。
方べきの定理より、8×5 = k×5k 。よってk=√8=2√2 。よって円の半径は6√2 。

501:132人目の素数さん
22/09/05 20:36:04.47 nQz8RyM9.net
比例反比例の問題で
「一定の厚さがある鉄板から二つのものを作った
一つは縦10センチ横20センチの長方形
もう一つは山梨県をそのまま再現した形状
長方形の方は重さが20グラムある
この条件から山梨県の面積を求めるにはどうすれば良いか?
って出題されてるけど、なに言ってるのか全く理解できない、誰かわかる人いる?

502:イナ
22/09/05 22:37:03.15 GnybyE7W.net
>>482
>>487
山梨県の形を題意の長方形に「等積変形しろっし!」ってことだから、
縦の長さをakmとおくと、
a×2a=4465
2a^2=4465
a=√(4465/2)
=√8930/2
≒47.25
2a≒94.5
∴縦47km1/4横94km1/2

503:イナ
22/09/05 22:46:20.34 GnybyE7W.net
>>488訂正。
こぴっとしろし。

504:132人目の素数さん
[ここ壊れてます] .net
解答してもらってる分際で悪いんだけど、中1の比例反比例の問題なので
比例反比例の解き方でお願いします(相当、単純な答えだと思うので)

505:132人目の素数さん
[ここ壊れてます] .net
質量比=面積比

506:132人目の素数さん
22/09/06 07:14:46.07 mIeR1Ox/.net
山梨県の重さを計ってその分を超包茎から抜いたのをグラフに示すのかな?

507:132人目の素数さん
22/09/06 07:41:23.74 YnMjOuU+.net
山形県の形の鉄板の底面積ではなくて山形県の面積を求めるの?
無理じゃね?

508:132人目の素数さん
22/09/06 12:23:46.94 5NWRtlHH.net
>>493
20gの長方形から山形県の形になってる鉄板の面積を求めろって問題
山形県鉄板の重さを計ってその分を20gの方から角切りにした物の縦横(縦は変わらないか)の面積を計れば答えになるけど
それが何で比例反比例の問題になるのかはわからない

509:132人目の素数さん
22/09/06 14:01:49.32 k1eEhSYt.net
密度一定なら体積は重さに比例
厚さ一定なら底面積は体積に比例
ってことじゃね?

510:132人目の素数さん
22/09/06 21:07:52.18 0lAI/CLB.net
加工前の鉄板は大きい板、そこから長方形と山梨県を切り出した。
板厚一定なので、面積と重さ(あるいは体積)は比例するということでしょ。 
長方形の面積と重さが与えられているので、山梨県の重さを測れば面積がわかる。

511:132人目の素数さん
22/09/06 22:23:18.10 nE34Zs9o.net
>>487
>もう一つは山梨県をそのまま再現した形状
これって、山梨県の大きさもそのまま再現していると思ってよいのか?

512:132人目の素数さん
[ここ壊れてます] .net
例題は山梨県となってるけど厚みが一定の鉄板から寸法と重量が書かれてる
長方形と別の何かならウンコ型でも他県のでも何でもOKでしょ
寧ろ解答者を惑わせるために敢えて県の面積とかにしてる気がする

513:132人目の素数さん
22/09/07 19:57:30.12 OtXcnrAG.net
途中で山形県の面積出そうと首ひねってる人がいますね

514:132人目の素数さん
22/09/07 20:40:16.90 bJu/JcNG.net
6/√3+√6/√2

515:イナ
22/09/07 23:04:17.82 eQQus0U2.net
>>489
>>500
6/√3+√6/√2=2√3+√3
=3√3

516:132人目の素数さん
22/09/08 13:32:01.85 4fU1HwLi.net
kが2以上の整数のとき (k^2+k-1)^2>3(k+1) を示したいのですが
次数からしてほとんど明らかなようにも思うのですが
微分とか大道具を使わずあっさり示すことできますか

517:132人目の素数さん
22/09/08 14:31:15.23 110VKmQM.net
k≧2の時、
(k*k + k - 1)*(k*k + k - 1)
≧(2*2+2-1)*(2*k + 2 - 1)
=(5)*(2k + 1)
= 10k + 5

518:132人目の素数さん
22/09/08 15:56:24.36 zB/aC/Ub.net
>>500
これ、答えを「2√3」にしてしまう悪い癖があった

519:132人目の素数さん
22/09/09 00:35:31.26 Xra9OnVp.net
>>503
ありがとうございました。
単調増加を何段階にもつかうのですね

520:132人目の素数さん
22/09/09 17:51:37.36 55DWka5A.net
同一の式の複数のkに対して値を代入したりしなかったりなんてしていいの?

521:132人目の素数さん
22/09/09 19:02:13.59 9OZNqN/c.net
>>506
この場合は良いよ。
同じkに対して、異なる値を入れたりしたらダメだけど

522:132人目の素数さん
22/09/10 01:24:55.74 KokZdbin.net
x^3-3x-3=0の実数解が1つしかないことh
微分法によらず示すことは無理でしょうか。

523:132人目の素数さん
22/09/10 01:41:47.04 atJ/k0fI.net
x=2で8-6-3<0だからひとつの実数解aは2より大きい
しかし三角の2乗の和は0²-2(-3)=6よりa²より小さい
∴残り2解の2乗の和は0未満

524:イナ
22/09/10 01:57:59.42 s4LTubrc.net
>>501
>>508
f(x)=x^3-3x-3とおくと、
f'(x)=3x^2-3=0を与えるxは、
x=±1
f(-1)=-1<0
f(1)=-5<0
f(2)=-1<0
f(2.1)=9.261-6.3-3=-0.039<0
f(2.11)=2.11(4.22+0.211+0.0211)-6.33-3
=4.4521×2.11-9.33
=8.9042+0.44521+0.044521-9.33
=9.34941+0.044521-9.33
=0.01941+0.044521
=0.063931>0
∴x^3-3x-3=0の解はただ一つ2.1<x<2.11に存在する。

525:132人目の素数さん
22/09/10 06:44:45.25 R4HTiDF5.net
>>509
端折りすぎ。
三角の和が0で、積が負なので、解の一つは -a より小さい。
ところが、三角の二乗和(=6)は 2a^2 (>8)より小さい。
矛盾。

526:132人目の素数さん
[ここ壊れてます] .net
>>508
微分は使わないけど、そもそも実数解という呼び方自体が複素数解に対応するものだと思うから、
説明の中にはどうしても小中学生を超えるネタが出てくるな

>>509、511も三次方程式の解が3つであることを利用しているし、
3つのうち2つが複素数であることを、書いてないだけで使っている。

527:132人目の素数さん
22/09/10 10:


528:07:32.90 ID:R4HTiDF5.net



529:132人目の素数さん
22/09/10 10:20:35.69 A+94Lh2E.net
小中学生への説明でよければ、グラフ化が一番わかりやすくないかなぁ?
URLリンク(i.imgur.com)

530:132人目の素数さん
22/09/10 11:03:23.41 Q8A+whwq.net
俺の中では高校レベルだなあ

531:イナ
22/09/10 11:54:41.45 PxPtqvhx.net
>>510
頂角Aが 20°の二等辺三角形 ABC において,辺 AB,AC 上に点 D,E をそれぞれ∠BCD=60 °,∠ CBE=50 °となるようにとる。このとき,∠ DEB は何度か。
—————————————————————
図を描くと、
∠DEB=70°

532:132人目の素数さん
22/09/10 17:20:53.81 KokZdbin.net
>>509  511  513
ありがとうございます。やはり数学の人はあたみいいですね。
見聞が広がりました。

533:132人目の素数さん
22/09/11 09:17:29.84 VWjfN9PS.net
>>511
「三角の和が0」って何?
角の意味が分からんのだけど

534:132人目の素数さん
22/09/11 17:34:47.18 QbZpDmnf.net
3次方程式x^3-6x-6=0の実数解はcbrt(2)+cbrt(4)
になるらしいのですがこれは簡単に導けるものでしょうか
やっぱりカルダモンの公式の考え方を経由せんとだめでしょうか。

535:132人目の素数さん
22/09/11 17:47:29.68 +eDN8Qbd.net
明らかに小中学校の範囲外を聞く奴ってなんなんだ

536:132人目の素数さん
22/09/11 20:47:48.87 gZrvbNob.net
( (1/(x-1)-1)^3-6(1/(x-1)-1) -6 ) (x-1)^3
= 2-x³ = 0
の解のひとつは³√2
よって与式の解のひとつは
x = 1/(³√2-1)-1
= (2-1)/(³√2-1)-1
= ³√4 + ³√2 + 1 -1
= ³√4 + ³√2

537:132人目の素数さん
22/09/12 02:31:48.48 VzBp+5lY.net
>>521
魔術師ですか?
こんな式をなんでひらめくのか、私に説明してくれてもよろしくてよ。

538:132人目の素数さん
[ここ壊れてます] .net
>>520
高校スレにはついていけず・相手にされず,小中スレだと自分が賢くなった気になれるから。

539:132人目の素数さん
22/09/12 14:02:11.10 cuAMr1CD.net
コンサートホールに、定員の8割8分にあたる484人が来場しました。
このホールの定員は何人でしょう。
この問題で、なんで
484/0.88をすると、定員がわかるの?と言われた。
88%にあたる数を88%を割ることで、なぜ100%にあたる数がわかるのかという意味のようですが、なんて子供に教えたらいいですか?
頭の良いお方、教えてください。

540:132人目の素数さん
22/09/12 14:23:39.31 tSKEOb+S.net
比例でいいのかな
1:X=0.84:484

541:132人目の素数さん
22/09/12 14:25:58.31 tSKEOb+S.net
または
定員×0.84=484
だからとか?

542:132人目の素数さん
22/09/12 14:41:33.44 cuAMr1CD.net
>>526
私も、定員×0.88=484だから と教えたのですが、娘いわく、
484÷0.88で1割がわかって、それを10倍するんじゃないの?
484の中に0.88がいくつあるかだから、おかしい気がする。
と言います。
やり方はわかってるけど納得はしていないということのようです。

543:132人目の素数さん
22/09/12 15:46:48.68 44QCXY4w.net
単に⁴√2+²√4が解になってる事を示すだけなら代入すれば終わり


544: しかし²√2や²√4の混じる式を弄るのは骨が折れるから手抜きできないかの問題 1番典型的な手抜きは P(x) = (x²+x)^3-6(x²+x) -6 がx=³√2のとき0になる事でそれは³√2の最小多項式がx³-2である事からP(x)がx³-2で割り切れる事と同値、しかしそれでは芸がない 技ひとつ使って ²√4+³√2 = ²√4+³√2 + 1 - 1 = ( ³√2³ - 1 )/(³√2-1) -1 = 1/(³√2-1) -1 と考えて Q(x) = (1/(x-1) - 1 )^3-6(1/(x-1)) -6 がx=³√2で0になる事と同値、分母払って同じ理屈でQ(x)(x-1)³がx³-2の定数倍となる事と同値 それが成立する事を確認する方針はややお洒落



545:132人目の素数さん
22/09/12 16:19:10.70 2+lfrI8K.net
>>524
0.88で割る計算は、88で割って100を掛ける計算と同じ。
全体の8割8分にあたる数を88で割れば、全体の1分になる。
その数に100を掛ければ全体の10割になる。

546:132人目の素数さん
22/09/12 16:36:04.72 3vz1Iej7.net
>>527
割り算の意味は複数あります。A÷B が AにBがいくつ分あるかというのも1つの意味ですが、実際の人数の484人と、
8割8分=0.88 の割合とは全く種類が異なる数ですから、そもそも幾つ分あるかと数えることは無意味です。
ここは、割り算の別の意味である「わる数が1になった時の、わられる数の大きさを求める式」という考えを利用します。
りんご9個に皿が3個あって、同様な割合で増減しているとします。当然、りんご3個だったら皿が1個になりますから、
9÷3=3÷1=3 となりますから、わる数の皿の数が1になった時、りんごが何個あるかという意味で割り算は使える訳です。
これを最初の問題に適用します。
484÷0.8 の意味は、割合の0.8が1となったとき、人数は何人になるかという問題になります。割合が1になったとき…というのは
元の人数=定員という意味と同じですから、問題になっている数を求めたことになります。

547:132人目の素数さん
22/09/12 17:36:39.53 qNPoST8b.net
比でやったらどうかね

548:132人目の素数さん
22/09/12 18:07:08.03 3vz1Iej7.net
比でやる方法もあるし、文章読解を行い「比べられる量÷割合=もとにする量」の公式に当てはめる方法もある。
方程式で解く方法もある。
問題は小学生の子供が疑問に思った事に真正面に向かい合ってそれに答えることが大切で、それが信頼につながると思う。
別解を出してこれでやれ!というのはなぜ私の方法が間違いなのかが判然とせずもやもやとしたものを残すと思う。
まあ、他の問題もたくさんやれば比が小学校範囲で一番簡単で(そこまでやっているかは知らないが)、方程式が他にも応用が効く方法だと俺も理解している。

549:132人目の素数さん
22/09/12 20:30:01.59 5b82Js2Q.net
>>527
割という言葉のせいで0.1のことを1(単位)と思ってるのかな
むしろこれまでの割り算はしっかり理解してるように思った

550:132人目の素数さん
22/09/12 20:42:09.52 UwsbfAWQ.net
あ。多分この人は過去スレの
何で分数のわり算はひっくり返してかけるんだ?
のスレの「泥臭く」とか「コツコツやる方法だ。」とか言って
わり算や分数の理解熟知を説いてた人だ。
どうなんだろ?数学者ど真ん中になるわけでもなきゃ、数理研究者や数学以外の理工学者でさえ
わり算や分数の詳細熟知する必要は無く「基本中の基本ツール」でしか無くなった上に各学問各分野も細分化したなぁ。
一方でわり算や分数を…何だっけ?この人が言ってた、等分除と包含除、だっけ?
そこまで完全無欠に、わり算や分数を理解する必要あんのかな?
欧米でも北欧まで行かないと上手くいく指導法とは、とても思えない。
『単語や熟語や諺などと云った言葉の概念ただそれだけを覚える事が
即座に理解力の拡張に繋がる傾向が世界一強い日本語』に依存し過ぎて
論理能力が低いまま、学習能力だけは日本語の読み取りにより高い傾向が著しい日本人には
歳が進んでから再学習するくらいの事をしないと理解しきれないんじゃないかな?
論理より『お気持ち尊重』が勝って、それが上手く行かない現実に対して同調圧力で応じて来たわけだし。
だから、違法コンプライアンス無効、違憲法律無効の大原則に反して
コンプライアンスが法律を押し退け、法律で憲法を押し退ける国なんだし。
違法または違憲な機密の告発が罪の、善か悪かではなく、片棒を担ぐかバラすかにより罪の有無が決まる国、
『コンプライアンス無効による告発者保護の原理』が踏みにじられる国。

551:132人目の素数さん
22/09/12 21:00:43.40 3vz1Iej7.net
>>534
よくわからないが、いずれにせよ文章問題を式に直す問題は、計算とはどういう時に行うのかを突き詰めないと
結局数学の定義問題と同じでそこが曖昧だとなんともならんと思うが。

552:132人目の素数さん
22/09/12 21:32:38.86 cuAMr1CD.net
>>524です。
回答してくださってありがとうございました!
比で説明してみたり、>>524さんの説明をそのまましてみて、>>535さんの説明もしてみました。
どこまで伝わるかなと思いましたが、納得できたようです!
私も昔から算数の時点で苦手だったのであまり深く考えないようにしてきましたが、自分の子供にはちゃんと説明してあげたかったので、とても助かりました。
前スレに分数の割り算(なぜひっくり返すのか)
が載っているようなので、前スレも見てから帰ります!
本当にありがとうございます😊

553:132人目の素数さん
22/09/13 05:51:16.02 ymdpx84L.net
分数の割り算はなぜ逆数を掛ければいいのか? - 5ちゃんねる
スレリンク(math板)
1=0.999… その16.999…
スレリンク(math板)
あれ?どこで書いてたかな、>>530氏は?前も思ったけど、530氏は塾講師ではなく教師か教材屋か何かだと思う。

554:132人目の素数さん
22/09/13 08:52:47.01 2Ldbee9t.net
数学で何故を考えるのは哲学者の仕事。

555:イナ
22/09/14 08:18:33.84 G6B4WKyl.net
>>516
JRの駅のホームの自販機にあるふじのジュースはなぜ美味しいか。ストレートだからだ。

556:
22/09/15 00:41:38.22 AFxQh+VH.net
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;俺が手本を;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;見せてやるよ。;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;/ ̄ ̄ ̄ ∩∩∩∩ ̄ ̄ ̄/\;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;/   ((^o`-。-))   /「;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;/   っц' υ⌒υ  //|;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;‖ ̄ ̄ ̄ ̄UUυυ ̄ ̄ ̄‖ |;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;‖  □ □ □ □ □  ‖ |;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;‖_________________‖/|;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;‖  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ‖ |;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;‖  □ □ □ □ □  ‖ |;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;/‖_________________‖//|;;;;;;;;;;
;;;;;;;;;;;;;;;;;‖  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ‖ |;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;‖  □ □ □ □  □ □  ‖ |;;;;;;;;;;;;;
;;;;;;;;;;;;;/‖_____________________‖//|;;;;;;;;;;
;;;;;;;;;;;;‖ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄‖ |;;;;;;;;;;
;;;;;;;;;;;;‖  □  □  □ □  □ □  □  ‖彡ミ、;;;;;;;
;;;;;;;;;;;;‖_________________________‖川` , `; ;;;;;;
;;;;;;;;;;;;‖;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;‖/U⌒U、;;;;;;
;;;;;;;;;∩∩;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∩∩;;;;;;~U U~;;;
;;;;;;;(_ _ )`⌒つ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;(_ _ )`⌒つ;;;;;;;;
;;;;;;;∪;;;;;∪;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;∪;;;;∪;;;;;;;;;;;;;;;;;;
>>516
>>519
f(x)=x^3-6x+6とおくと、
f’(x)=3x^2-6=0より、


557: x^2=2 x=±√2 f(√2)=2√2-6√2-6=-4√2-6=-5.6568……-6=-11.6568…… f(-√2)=-2√2+6√2-6=4√2-6=0.3431…… f(0)=-6 f(1)=-11 f(2)=-10 f(3)=1 f(2.85)=0.049125 ∴グラフより唯一解x=2.84……が存在するとわかる。



558:イナ
22/09/15 01:04:42.33 VWsbJNlN.net
>>540
2.847322101863073^3-6(2.847322101863073)-6=0

559:132人目の素数さん
22/09/17 21:21:59.08 ED0DvQ28.net
ふわふわ

560:132人目の素数さん
22/09/17 21:22:11.10 ED0DvQ28.net
URLリンク(sansu.org)
この問題分からない

561:
22/09/18 00:51:45.63 hjJJGNaS.net
>>541
>>543
△BCQ=28㎠
△BPR=△PCS=9㎠
△QSD=5㎠
△ARQ=10㎠
凹四角形QBCDが9+10+9+12+5=45(㎠)
凸四角形ABDQが15+10+△AQD=46(㎠)
△AQD=46-(15+10)=21(㎠)
∴21㎠

562:132人目の素数さん
22/09/18 06:49:33.75 /9z8vtKL.net
>>543
これまだやってるんだ。なつかしー。
検索したら1998年のランキングにまだ名前載ってたわ。

563:132人目の素数さん
22/09/18 14:50:16.43 Vd50sUVw.net
>>544
> △BCQ=28㎠
これは何でですか?

564:132人目の素数さん
22/09/18 14:58:23.91 Vd50sUVw.net
あれ、自分で計算したら 17 cm2になった。
どこが間違ってるんだろ?

565:イナ
22/09/18 16:13:22.00 Ne2yhI4D.net
>>544修正。目測誤った。
>>543
△BCQ=26㎠
△BPR=△PCS=8㎠
△QSD=5㎠
△ARQ=10㎠
凹四角形QBCDが8+10+8+12+5=43(㎠)
凸四角形ABDQが15+10+△AQD=42(㎠)
△AQD=42(15+10)=17(㎠)
∴17㎠

566:132人目の素数さん
22/09/18 16:13:57.59 Vd50sUVw.net
> △BCQ=26㎠
これは何でなの?

567:132人目の素数さん
22/09/18 18:37:39.23 Vd50sUVw.net
>>548
よく見たら「目測」って書いてあるけど、数学の問題考える時に「目測」って使うの?

568:132人目の素数さん
22/09/18 20:06:17.78 GMnKc6nQ.net
>>548イナ←名前欄に名前を書こうとするとコミックシーモアがひらいて書けない。
>>549
△BCQ=△BPR+△PCS+四角形PSQR
=8+8+10
=26(㎠)

569:132人目の素数さん
22/09/18 20:15:38.71 Vd50sUVw.net
>>551
△BPR=8ってこと?
なんで?

570:イナ
22/09/20 15:33:58.90 qRWYDy6p.net
>>551
>>552
なんでと言われても、数学って哲学とは違うからとしか。

571:132人目の素数さん
22/09/20 22:44:21.72 V6aV1msP.net
m桁の平方数Aと m桁の平方数B を左右に並べてドッキングして2m桁の自然数ABをつくるの。
このABが平方数になるような例は
 4と9のドッキング 49
 16と81のドッキング1681
以外にもいっぱいありますか。
なお、25と00をドッキングして2500とか作るのはナシです。

572:132人目の素数さん
22/09/21 07:05:07.03 lnHCYRys.net
ある

573:132人目の素数さん
22/09/21 07:19:59.41 SKye4YAd.net
>>554
朝飯前のプログラム解
m=3
144400 225625 324900
おまけ 言語ver4.1
f <- function(x, tol = .Machine$double.eps^0.5){
abs(sqrt(x) - round(sqrt(x))) < tol
}
m=3
n=10^(m-1):(10^m-1)
sqn=n[f(n)]
sqp=as.matrix(expand.grid(sqn,sqn))
sqc=sqp[,1]*10^m+sqp[,2]
sqc[f(sqc)]

574:132人目の素数さん
22/09/21 07:21:05.89 SKye4YAd.net
m=4
24019801

575:132人目の素数さん
22/09/21 07:23:45.93 SKye4YAd.net
m=5
5198410000 8122515625 1587624025 3132976729 2528178961 2371690000 6350496100

576:132人目の素数さん
22/09/21 07:27:50.98 7ab0M2Ps


577:.net



578:132人目の素数さん
22/09/21 08:03:05.00 L7W0BnI6.net
入力がどんな値であるかに関わらず、でたらめな1つの値を出力する箱。
それを関数と呼ぶことはできますか?

579:132人目の素数さん
22/09/21 08:32:53.33 lnHCYRys.net
いいえ

580:132人目の素数さん
22/09/21 08:45:17.87 SKye4YAd.net
m=6
249001998001

581:132人目の素数さん
22/09/21 13:20:36.49 hslEiVx1.net
各mについてこのような平方数は作れるということでしゅうか?

582:132人目の素数さん
22/09/21 15:44:06.60 wzlbZ8tS.net
>>554
今仕事中だから正確な答えは後ほど。
URLリンク(manabitimes.jp)
ここら辺を読めば多分答えのヒントになると思う。
ならなかったらゴメン

583:132人目の素数さん
22/09/22 15:23:45.80 7W7zML5Y.net
>>564
質問者ではないですが、こんな感じでいいのかな
・mが偶数のとき
1通りの解が存在する。
mが偶数なので、下位桁=a^2 と上位桁×10^m=b^2 が
ともに平方数となり、ピタゴラス数の生成公式
a=p^2-q^2, b=2pq, c=p^2+q^2
を満たす p>q が存在する。
問題の仮定
a^2 がm桁、b^2 が2m桁で 10^m の倍数
が成り立つのは p=(1/2)(10^(m/2)), q=p-1 のみ。
このとき
m=2, p=5, q=4, c^2=1681
m=4, p=50, q=49, c^2=24019801
m=6, p=500, q=499, c^2=249001998001


584:132人目の素数さん
22/09/22 15:42:46.27 7W7zML5Y.net
>>565の続き
・mが奇数(m=2k+1)のとき
いくつかの解が存在し、mが増えると解の個数も
増えると考えられる。
A=上位桁×10^m について、ほぼ等しい2数の積
A=PQ に分ける約数 P,Q が存在し、
下位桁の候補 ((1/2)(P-Q))^2 が
ちょうど m桁となればよい。
解を探す場合、下位桁は総当たりではなく
√A に近いP、積がAになるQ の組を
10^k≦(1/2)(P-Q)<(√10)(10^k)
の範囲でだけ探せばよく、やや高速化できる。

他にも色々法則がありそうだけど
いちおうここまで

585:132人目の素数さん
22/09/23 00:06:00.55 uTqc0l1Z.net
m=8 には
2499000199980001
だけじゃなく
1466124176580001
もあるよ

586:132人目の素数さん
22/09/23 11:06:10.30 gv1yRhAZ.net
あらら
きちんと調べる必要がありそうね

587:132人目の素数さん
22/09/23 12:00:00.57 6W3z+LVY.net
m=1.
49.
m=2.
1681.
m=3.
144400,225625,324900.
m=4.
24019801.
m=5.
1587624025,2371690000,2528178961,3132976729,5198410000,
6350496100,8122515625.
m=6.
249001998001.
m=7.
10547295475600,12232366350400,14042257290000,15976968294400,18036499363600,
23073612250000,25027247420176,36633966760000,48092491265625,58660847767369,
61009002802276,81054099030025,85497762250000,92294449000000.
m=8.
1466124176580001,2499000199980001.
m=9.
102414400506250000,112911876558140625,122478489944332900,123921424612562500,135443044669515625,
140635881210482064,142969849131331600,147476736729000000,160022500791015625,168662169225000000,
173080336855562500,186650244922640625,200732224992250000,203604361605160000,203918400115562500,
246741264139830625,249987721150773841,250019344374190336,293642496166410000,299843856400000000,
316377369659051584,344622096195


588:300625,390655225584672400,399680064226502500,458816400260015625, 468506025625000000,522031104295840000,562543524841928256,571879396525326400,589324176333975625, 656076996201640000,660695616374422500,674648676900000000,736145424417180625,810028521251064025, 815673600462250000,899280144509630625,986965056559322500,999950884603095364.



589:132人目の素数さん
22/09/23 12:02:00.60 6W3z+LVY.net
m=10.
10894620496601400001,24999000019999800001.
m=11.
1023982086478344010000,1232877122522500000000,1256663420152922542401,1330885249690000000000,1384599356142025000000,
1600022606479851456400,1775343056432400000000,1838274988911924640000,1871752334460947265625,2024985920424473473600,
2234068302494084519824,2401012230415575040000,2416439160144100000000,2499972076977969951361,3038781104119712160000,
3039408692143056250000,3156165433657600000000,3164093864177724979264,3317789390465088765625,3751581610024336000000,
3994521876972900000000,4539413748129446560000,4556218320955065315600,4931508490090000000000,5068171587698719754809,
5270743556112825562500,5402277518435043840000,5781812611628476562500,6340172920941127840000,7158728336411316704400,
7353099955647698560000,7724786422519362165904,8099943681697893894400,8441058622554756000000,9370210766422801000000,
9604048921662300160000,9743824680115403292100,9825466393684462890625.
m=12.
249999000001999998000001.

590:132人目の素数さん
22/09/23 12:04:00.39 6W3z+LVY.net
m=13.
10239982771847246325610000,10487971956641822500000000,10556021306259765625000000,10562515630815782774467600,11206297256047190442250000,
11581268025691472824960000,12250018128046706649678400,12369932888042871143858025,14062520810257698960090000,14161666407841082900390625,
14305403867042190400000000,14654530924811737081824256,16000023677448759705702400,16387456182252847656250000,17682004891695716881000000,
18062526729619888886515600,20954733806256942334398561,21381399686446560001562500,21679529256099859600000000,21990991800965104255747600,
22352193542253422500000000,23597936902444100625000000,24999973750446890394001936,25176295836161925156250000,32119414117215581406250000,
32187158700844928400000000,34360924689007975399605625,37903728845441284255562500,38950101220842624400000000,39337962244003008056640625,
40163887526492182119840000,41951887826567290000000000,43810299342816708100000000,46325072102765891299840000,47978390176092250000000000,
50770093812841196836000000,53095358030499226406250000,54635743300414217149744900,56646665631364331601562500,57221615468168761600000000,
58618123699246948327297024,61035184809003340765106176,71402466713763879324160000,77102405998245895791015625,80999949104017995067278025,
85283389902242889575015625,87637727746895904900000000,88073798047292191975003024,96040055350897975117200625.
m=14.
2499999000000199999980000001.

591:132人目の素数さん
22/09/23 15:57:


592:43.81 ID:PXVm2nC9.net



593:132人目の素数さん
22/09/23 19:46:53.50 vdunLrHS.net
四角すいで、4つの側面が合同な三角形ならば、その四角すいは
 底面が正方形で、4つの側面は合同な二等辺三角形
になるといえますか。

594:132人目の素数さん
[ここ壊れてます] .net
>>573
言えない

595:573
22/09/23 21:53:35.49 vdunLrHS.net
すみません。そうですね。かんたんなはんれいがつくれますた。
すみません。ではあらためて
四角すいで、4つの側面が合同な三角形ならば、
その四角すいの底面はひし形といえますか?

596:132人目の素数さん
22/09/24 05:53:57.26 N2hpANFw.net
>>572
下限は 500/√2 でなく
500/(2.5^(1/4))=397.6353…
でよいでしょう

597:132人目の素数さん
[ここ壊れてます] .net
>>575
反例として、となり合う2辺ずつが等しく
4辺が等しくない「たこ形」となる場合があります

四角すい H-ABCD において
AB=BC=HD, CD=DA=HB, HA=HC
とすれば、底面は AB=BC のたこ形で
側面の4つの三角形は合同になります

598:132人目の素数さん
22/09/24 07:18:56.82 qKiV62Pt.net
>>575
言えます

599:132人目の素数さん
22/09/24 12:22:51.17 7SodX3KH.net
URLリンク(manabitimes.jp)

600:132人目の素数さん
[ここ壊れてます] .net
>>577が正解だね。
>>579は四面体の話だから>>575とは関係ない。

601:132人目の素数さん
22/09/24 14:48:11.74 7SodX3KH.net
あぁ四角錐か

602:132人目の素数さん
22/09/24 15:25:54.51 7SodX3KH.net
これね
URLリンク(sagecell.sagemath.org)

603:573
22/09/24 20:02:24.30 hDVavjHE.net
ありがとうございまいった。
べんきょうになりました!

604:132人目の素数さん
22/09/25 04:43:14.55 aY7aCpD+.net
拾い画像なんですがわかりません。
そもそも小中の範囲かどうかも。
URLリンク(i.imgur.com)

605:132人目の素数さん
22/09/25 16:23:11.43 2/Yx9lQP.net
>>584
三角関数でゴリ押しすると25になった
きれいな数になったのでうまい方法があるのかも知れない

606:132人目の素数さん
22/09/25 16:47:42.40 llYVEa7S.net
ブルーの四角形において、水平気味の方の対角線を引くと、
下部は正三角形(以後T1)、上部は全体と相似の三角形(以後T2)になる。
面積8の三角形(以後T3)の三辺を 6a,6a,6b
面積15の三角形(以後T4)の三辺を 6a,6a,6c
とすると、全体の三角形の三辺は 8b+4c,4b+8c,12a と表せる
T2において、60°の角から対辺に垂線を引くと、
T2は、T3の半分と相似の図形と、T4の半分と相似の図形に分けられ、
相似比を利用して対辺の辺長に関する式を作ると、3a^2=b^2+c^2+bc という式が得られる。
(この式は余弦定理からも出せるが、上のようにすると中学数学でも出せる)
あとは、T3、T4の面積の式を作り、連立させると、a,b,cが求まり、ヘロンなどから全体の面積が48と解り、
問われている部分の面積が25と分かる。
以上、力技です。スマートな方法がありそうでなりません。

607:132人目の素数さん
22/09/25 20:34:03.68 YIpbGi+g.net

URLリンク(o.5ch.net)

608:132人目の素数さん
22/09/25 20:38:51.34 SePv9A2y.net
>>587
なにこれ?
これで>>586より楽に解けるん?
いわゆる「小学生にもわかるけどかえって難しいやつ」じゃないん?

609:132人目の素数さん
22/09/25 20:44:07.43 YIpbGi+g.net
図のような補助線を考える。さらにAE=a,AD=bとする
OB=OD=OE=OC だから、Oを中心とすると点B,D,E,Cは同一円周上にある。したがって∠BDC=∠CEB=90°
∠A=60°なので AC=2b,AB=2a
△BEC=2△OEC=30=√3a×(2b-2a) ,△BDC=2△BDO=16=√3b×(2a-b)
後はこれらを連立させるとa,bが計算できるから、それを出して△ABC全体の面積から8と15を引けば完成
URLリンク(o.5ch.net)

610:132人目の素数さん
22/09/25 20:57:49.07 8xbR95O+.net
楽になってませんがな

611:132人目の素数さん
22/09/25 22:16:28.19 YIpbGi+g.net
まあ似たようなカンジだけどね。

612:132人目の素数さん
22/09/25 22:59:27.40 1P4wzWX2.net
ノミキック三角比
図の三角形の上、左、右の頂点をA,B,Cとする
BCの中点をDとし赤三角形を△BDF、緑三角形を△CDEとし∠CDE = 2x, ∠BDF = 2yとおく
x+y = π/3と△CDE : △BDF = 15:8により
15:8 = sin(2x):sin(2y)
= sin(2x) : √3/2 cos(2x) + 1/2sin(2x)
∴ 15:1 = sin(2x) : √3cos(2x)
t = tan(x)とすれば
2t : √3(1-t²) = 15:1
解けばt = 5/9√3 ( ∵ t > 0 )
∴ △CDE : △DEF = sin(2x) : sin(π/3)
= 15/26√3 : √3/2
= 15 : 13
∴ △CDE = 15/13△DEF、△BDF = 8/13△DEF、□FBCE = 36/13△DEF
△AEF : △AEF + □FBCE = 1:4より△AFE = 12/13△DEF


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch