22/06/17 19:13:15.95 P27hnq19.net
松坂和夫著『集合・位相入門』
(S, O) を位相空間とする。
x ∈ S とする。
V(x) を x の近傍全体の集合とする。
pp.161-162
定理10
(Vi) すべての V ∈ V(x) に対して、 x ∈ V。
(Vii) V ∈ V(x) で V ⊂ V' (V' ∈ 2^S)ならば、 V' ∈ V(x)。
(Viii) V1 ∈ V(x)、 V2 ∈ V(x) ならば、 V1 ∩ V2 ∈ V(x)。
(Viv) 任意の V ∈ V(x) に対して、次の条件を満たす W ∈ V(x) が存在する:
W の任意の点 y に対して V ∈ V(y)。
定理11
(Vi)~(Viv) を満たす S から 2^S - {空集合} への関数 x → V(x) に対して、
V(x) が位相空間 (S, O) における x の近傍系となるような位相空間 (S, O) が一意的に存在する。
定理10って以下のように書いたほうがいいですよね?
(V0) すべての x ∈ S に対して、 V(x) は空集合ではない。
(Vi) すべての V ∈ V(x) に対して、 x ∈ V。
(Vii) V ∈ V(x) で V ⊂ V' (V' ∈ 2^S)ならば、 V' ∈ V(x)。
(Viii) V1 ∈ V(x)、 V2 ∈ V(x) ならば、 V1 ∩ V2 ∈ V(x)。
(Viv) 任意の V ∈ V(x) に対して、次の条件を満たす W ∈ V(x) が存在する:
W の任意の点 y に対して V ∈ V(y)。
定理11
(V0)~(Viv) を満たす S から 2^S への関数 x → V(x) に対して、
V(x) が位相空間 (S, O) における x の近傍系となるような位相空間 (S, O) が一意的に存在する。