22/05/14 02:46:15.62 l2l6+jzs.net
>>764
できました
6 優級数法
an=1/n(n+1)よりΣanは収束する。よって収束する。
7 交代級数の収束条件
n≧3でbnは単調減少で0に収束する。従って級数Σanは収束する。
8 θ=0, πならば0に収束する。
それ以外のとき、ディリクレの判定条件。pn=1/n。|Sn|<1。級数Σanは収束する。
9 θ=0の時, 発散する。
それ以外の時, ディリクレの判定条件。単調減少に0に収束するので満たす。よって級数は収束する。
10 ラーベの判定法。an→1。
n(an/a(n+1)-1)→b-a。
>1ならば収束し、<1ならば発散する。=1ならばnan→a+1>1より発散する。
優級数法。