22/05/12 23:47:49.85 JVDK4B8T.net
>>702-703
おいおい、
やっぱり”おっちゃん”か?
>e^xの中にはexp xと一致するものも
>そうでないものもある
なにを言っているんだ
exp x := e^x
で、これは定義だよ URLリンク(ja.wikipedia.org) 「自然指数関数」 [注釈 2]はネイピア数 e (= 2.718281828…) を底とする関数 x → e^x である。これを exp x のようにも書く。
>だからa^x は一意に定まらない
>これがw^z を数学で扱わない決定的理由
違うよ
多価性には、それなりの意味があるよ
例えば、-1の3乗根 (-1)^1/3 を複素数で考える
x^3=-1
x^3+1=0
因数分解して ( URLリンク(detail.chiebukuro.yahoo.co.jp) X3乗+1=0の因数分解のやり方を教えて下さい yahoo)
(x+1)(x^2-x+1)=0
これから、3つの3乗根が求まる
(-1)^1/3 =-1,1/2+i(√3)/2,1/2-i(√3)/2が出る (二次方程式の解の公式より URLリンク(ja.wikipedia.org) )
さて
(-1)^1/3を、オイラーの公式で解くよ
-1=cosπ+i sinπ より (-1)^1/3 =cosπ/3+i sinπ/3 =1/2+i(√3)/2 (cosπ/3=1/2,sinπ/3=(√3)/2 だ URLリンク(kentiku-kouzou.jp) )
1周 2π ずらして
-1=cos3π+i sin3π より (-1)^1/3 =cos3π/3+i sin3π/3 =-1
逆に1周 -2π ずらして
-1=cos-π+i sin-π より (-1)^1/3 =cos-π/3+i sin-π/3 =1/2-i(√3)/2
つまり、上記と一致しているだろ
このように、 (-1)^1/3 の多価性には意味があり、代数方程式の解とも整合している
つづく