Inter-universal geometry と ABC予想 (応援スレ) 65at MATH
Inter-universal geometry と ABC予想 (応援スレ) 65 - 暇つぶし2ch526:132人目の素数さん
22/04/23 12:57:42.85 MU2asfqc.net
>>495
つづき
P7
§ 1.3. Introduction of identical but mutually alien copies
P12
§ 2. Changes of universe as arithmetic changes of coordinates
§ 2.1. The issue of bounding heights: the ABC and Szpiro Conjectures
In this case, the height of a rational point may
be thought of as a suitable weighted sum of the valuations of the q-parameters of
the elliptic curve determined by the rational point at the nonarchimedean primes of potentially multiplicative reduction [cf. the discussion at the end of [Fsk], §2.2; [GenEll],
Proposition 3.4]. Here, it is also useful to recall [cf. [GenEll], Theorem 2.1] that, in the
situation of the ABC or Szpiro Conjectures, one may assume, without loss of generality,
that, for any given finite set Σ of [archimedean and nonarchimedean] valuations of the
rational number field Q,
In particular, when one computes the height of a rational point of the projective line
minus three points as a suitable weighted sum of the valuations of the q-parameters of
the corresponding elliptic curve, one may ignore, up to bounded discrepancies, contributions to the height that arise, say, from the archimedean valuations or from the
nonarchimedean valuations that lie over some “exceptional” prime number such as 2.
P28
It is precisely this state of affairs that results in
the quite central role played in inter-universal Teichm¨uller theory by results in
[mono-]anabelian geometry, i.e., by results concerned with reconstructing
various scheme-theoretic structures from an abstract topological group that “just
happens” to arise from scheme theory as a Galois group/´etale fundamental
group.
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch