22/01/22 21:12:02.74 kqlGdb+O.net
>>204
Mは1次元多様体
p∈M
(U, φ)は、pを含む座標近傍Uで、U~R、φ(p) = 0となるもの。
ω∈Ω^1(M)、ωはU上でf(x)dx、M\U上では0と表せるとする。fはなめらかな関数で、f(0)≠0とする。
Rの測度として、>>198のδ_0を取った場合を考える。
∫_M ω = ∫_R f(x)dx = ∫_R f(x)dδ_0 = f(0)
(V, ψ)は、pを含む別の開近傍で、V~R、ψ(p) = 0。
V上でωはg(y)dy、M\V上では0と表されるとする。このとき、
∫_M ω = ∫_R g(y)dy = ∫_R g(y)dδ_0 = g(0)
よって、f(0) = g(0)。
U∩V上では、ψ○φ^(-1)(x) = 2xと表されるとする。
このとき、
∫_R g(y)dy = ∫_R g(2x) 2dx = 2g(0) ≠ g(0)(矛盾)
なるほど