Inter-universal geometry と ABC予想 (応援スレ) 64at MATH
Inter-universal geometry と ABC予想 (応援スレ) 64 - 暇つぶし2ch618:132人目の素数さん
22/01/26 08:26:29.73 gqrpC6se.net
>>567
>1.いま、順序集合Aとして、実数Rを考える。正の部分をR+={x|x>0, x∈R}とする。同様に、負の部分をR-={y|y<0, y∈R}とする
> 0に対して、∀y < 0 < ∀x と書ける。Rは連続だから、0の右隣も左隣もないが、何の問題もない
>2.いま、順序集合Aとして、有理数Qを考える。正の部分をQ+={x|x>0, x∈Q}とする。同様に、負の部分をQ-={y|y<0, y∈Q}とする
> 0に対して、∀y < 0 < ∀x と書ける。Qは稠密だから、0の右隣も左隣もないが、何の問題もない
そもそもR上でもQ上でも通常の大小関係<は整列順序でないことは理解してる?
そもそもR上でもQ上でも二項関係<はその名の通り二項の関係であることは理解してる?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch