22/01/24 10:31:44.69 4aFH85My.net
>>528
つづき
N における別な整列順序としては、例えば、どの偶数もどんな奇数よりも小さいものとし、偶数同士あるいは奇数同士では通常の大小関係を適用することで得られる順序
0, 2, 4, 6, 8, …, 1, 3, 5, 7, 9, …
が挙げられる。この順序に関する整列集合の順序型は ω + ω である。任意の元が直後の元を持つ(したがって最大元は存在しない)が、直前の元を持たない元が 0 と 1 の二つ存在する。
整数の全体 Z
自然数の全体に通常の大小関係を考えたものとは異なり、整数全体の成す集合 Z に通常の大小関係 ≦ を考えたものは整列集合ではない。たとえば、負の整数全体の成す集合には最小元が存在しない。
次のような二項関係 R を考えれば、Z を整列集合にすることができる。
ふたつの整数 x, y に対して、xRy となるための必要十分条件は
x = 0;
x が正で y が負;
x, y がともに正で、x ≦ y;
x, y がともに負で |x| ≦ |y|
のうちのいずれか一つが成立することと定める。この関係 R は要するに
0, 1, 2, 3, 4, …, -1, -2, -3, …
となる順序として表すことができる。この整列順序 R に関する整列集合 Z の順序型は順序数 ω + ω に順序同型である。
Z の別な整列順序の例としては、x ≦Z y ⇔ |x| < |y| または [|x| = |y| かつ x ≦ y] として定まる順序 ≦Z が挙げられる。図示すれば
0, -1, 1, -2, 2, -3, 3, -4, 4, …
である。これは ω を順序型とする整列順序である。
つづく