22/01/24 10:31:44.69 4aFH85My.net
>>528
つづき
N における別な整列順序としては、例えば、どの偶数もどんな奇数よりも小さいものとし、偶数同士あるいは奇数同士では通常の大小関係を適用することで得られる順序
0, 2, 4, 6, 8, …, 1, 3, 5, 7, 9, …
が挙げられる。この順序に関する整列集合の順序型は ω + ω である。任意の元が直後の元を持つ(したがって最大元は存在しない)が、直前の元を持たない元が 0 と 1 の二つ存在する。
整数の全体 Z
自然数の全体に通常の大小関係を考えたものとは異なり、整数全体の成す集合 Z に通常の大小関係 ≦ を考えたものは整列集合ではない。たとえば、負の整数全体の成す集合には最小元が存在しない。
次のような二項関係 R を考えれば、Z を整列集合にすることができる。
ふたつの整数 x, y に対して、xRy となるための必要十分条件は
x = 0;
x が正で y が負;
x, y がともに正で、x ≦ y;
x, y がともに負で |x| ≦ |y|
のうちのいずれか一つが成立することと定める。この関係 R は要するに
0, 1, 2, 3, 4, …, -1, -2, -3, …
となる順序として表すことができる。この整列順序 R に関する整列集合 Z の順序型は順序数 ω + ω に順序同型である。
Z の別な整列順序の例としては、x ≦Z y ⇔ |x| < |y| または [|x| = |y| かつ x ≦ y] として定まる順序 ≦Z が挙げられる。図示すれば
0, -1, 1, -2, 2, -3, 3, -4, 4, …
である。これは ω を順序型とする整列順序である。
つづく
575:132人目の素数さん
22/01/24 10:32:25.87 4aFH85My.net
>>529
つづき
実数からなる集合
正の実数全体の成す集合 R+ に通常の大小関係 ≦ を考えたものは整列順序ではない。
一方、選択公理を含む集合論の ZFC 公理系からは、実数全体の成す集合 R 上の整列順序が存在することが示せる。しかし、ZFC や、一般連続体仮説を加えた体系 ZFC+GCH においては、R 上の整列順序を定義する論理式は存在しない[1]。ただし、R 上の定義可能な整列順序の存在は ZFC と(相対的に)無矛盾である。例えば V=L は ZFC と(相対的に)無矛盾であり、ZFC+V=L ではある特定の論理式が R(実際には任意の集合)を整列順序付けることが従う。
R の非可算部分集合に通常の大小関係を入れたものが整列集合にならないことは、実数直線 R を互いに交わりを持たない区間の和に分割するとき、そのような区間の数が高々可算であることからわかる。
可算無限集合ならば、通常の大小関係 ≦ が整列順序となることも、ならないこともありうる。
(引用終り)
以上
576:132人目の素数さん
22/01/24 10:54:57.05 7HBaYXuU.net
キチガイしかいないね
577:江戸前寿司
22/01/24 10:57:33.30 .net
>>528
>スレ主です
デロデロに溶けまくった馴れ寿司だろw
>1<2<・・<ωとできる。
>この順序列の存在は否定できない
だれも
578:否定してないが? 一方 ω>…>2>1 なる降下列は皆有限列 なぜならω>xなるxは、皆自然数だから x<λなる任意のxから0への降下列が皆有限長なら λから0への降下列も有限長 これが超限帰納法 可算だろうが非可算だろうが いかなる無限順序数から0への降下列も有限長 これ知らん奴は集合論の初歩も分からん🐎🦌な
579:132人目の素数さん
22/01/24 12:05:30.90 4aFH85My.net
>>532
どうもです。スレ主です
>> 1<2<・・<ωとできる。
>>この順序列の存在は否定できない
>だれも否定してないが?
なに食言してんだ? おサルさんよ!>>7
(>>7より)
”(スレ55 スレリンク(math板:158番)より)
<上昇列 0<・・・<ω が有限列にしかなり得ない
ことも分からん「考えなしの素人」に数学はムリ”
などという
これじゃ。三歳児レベルの知能じゃんかw
このおサルには、IUTは百年早いぜw(^^;
(引用終り) 以上
580:江戸前寿司
22/01/24 13:06:32.85 .net
>>533
>スレ主です
デロデロに溶けまくった馴れ寿司だろw
>なに食言してんだ?
なに最近覚えた言葉得意になって繰り返してんだ ニホンザルw
> <上昇列 0<・・・<ω が有限列にしかなり得ない
0<・・・ωなら無限列になる
0<・・・x<ωなら有限列しかない
違いが分からん、中卒ニホンザルwwwwwww
581:132人目の素数さん
22/01/24 15:13:53.45 lYzA8f64.net
> そんなに初項が欲しければ、下記のように初項0を追加すれば良いw
>
> 列の長さは、2ωになる。全順序の増加列だが、 定義(an)n∈Nから外れるので、松坂和夫の昇鎖の定義から外れる
> が、・・<1/n<・・<1/2<1<・・<1+1/n<・・<1+1/2<1+1=2 と書いても間違いではない!ww
> ↓
> 列の長さは、2ωになる。全順序の増加列だが、 定義(an)n∈Nから外れるので、松坂和夫の昇鎖の定義から外れる
> が、0<・・<1/n<・・<1/2<1<・・<1+1/n<・・<1+1/2<1+1=2 と書いても間違いではない!ww
>
> となる
> 数学的な本質は変わらない
> 初項は、いつでも追加できる!w
スポポポポポポーン!!!
。 。
。。 。 。。゚
。 。。゜。゚。。
/ // / /
( Д ) Д)Д))
スパパパパパパーン!!!!!
+ ,, * +
" +※" + ∴ * ※ *
* * +※ ゙* ※ * +
+ "※ ∴ * + * ∴ +
* ※"+* ∵ ※ *"
( Д ) Д)Д))
582:132人目の素数さん
22/01/24 15:16:26.32 lYzA8f64.net
>>527
あぁー…人間をやめ、馬と鹿の交雑種もやめ、便所虫もやめ、とうとう便食虫に成り果てたか…
正に 腐 り 寿 司 食 い だな、お前は。カビまみれ寿司食いだな、お前は。
583:江戸前寿司
22/01/24 15:21:50.61 .net
SET Aは馴れ寿司の中の乳酸菌🦠
584:江戸前寿司
22/01/24 15:25:36.79 .net
URLリンク(hyoki.jp)
「なれずしの正確な起源ははっきりしていませんが、
滋賀県の琵琶湖周辺あたりの地域で
家庭料理として代々受け継がれてきたもの
だとも言われています。」
SET A、滋賀作だったか
585:132人目の素数さん
22/01/24 18:28:48.00 4aFH85My.net
>>517 補足
>これ、綺麗に解説している人が居る
>必要十分の証明で、前半が背理法、後半が(対偶)なんやね。松坂の巻末に略解があり、同じことを書いているが、下記は丁寧で分かり易い。お見事です
松坂和夫「集合・位相入門」(岩波 1968) 第三章
P105 問題の2 の巻末
P307 略解 より
2. Aに降鎖(an) n∈N が存在すれば,{an}n∈N は最小元を持たないから、Aは整列集合でない。
逆に、Aが整列集合でなければ、Aの空でない部分集合Mで最小元をもたないものが存在する,
そのとき、任意のa∈Mに対し、Ma={x|x∈M,x<a}≠Φ(空集合でない)。
よって、Mで定義された写像φで、すべてのa∈Mに対しφ(a)∈Maとなるものがある。
そこで,Mの元a1を任意に1つとり、φ(a1)=a2,・・・,φ(an-1)=an,・・・として(an) n∈N
を定めれば,これはAの降鎖となる.
QED (引用終り)
ここ、佐々木数学塾の先生の証明>>517は、きちんと、前半が背理法、後半が対偶証明と、誘導を付けてくれているから分かり易い
上記の松坂の巻末略解を読んで、すーと分かる人は、相当レベル高いだろう
「Mで定義された写像φで」などと 出てくるのだが、
ここ ”§3 Zor
586:nの補題、整列定理”の問題なので、この問題の前に類似の考えが出ているのでしょうね、きっと(私は見てないがw) 望月IUTの証明も、これかなと思う 論文だから、ページ数を減らすべく できるだけ 簡素に圧縮して書いてあるのだろう だから、誘導などもあまりないだろうから、遠アーベル専門外の人には、読みにくいのでしょうね ここら、望月IUTの証明のポケットガイドブック(観光案内みたいな)がいると思う あまり細かいと、ダメ 大まかな ポケットガイドブックで、それを参照しながら、IUT論文を読むようなものがね
587:132人目の素数さん
22/01/24 19:58:59.74 lYzA8f64.net
>>503
おーそこの人間をやめ馬と鹿の交雑種もやめ便所虫もやめ便食虫に成ったセタ爺、まだか?
何なんだよ『…』なんて多候補提示回答は?そんなんじゃ全然、『解答』に成ってねぇじゃねぇか、未解決じゃねぇか。
お前、知ってるよな、持ってるよな?秋山仁の著作『皆殺しの數学』。あれに書いてあっただろうが。
AT&Tベル研究所が提起した『2×1000の長方形の中に直径1の円は幾つ入るか』と言う問題が
『2011個か2012個かの何れか一方と迄は分かってるが其の後の2候補の内のどちらかはまだ分かっていない』って。
其の最後の2候補の内のどちらか分からない時点で未解決の扱いなんだよ。
当然『…』なんて不特定多数もじゃ『解答』に成ってないんだよ、
『“解”決“答”案』に成ってない『“未”“解”決“答”案』じゃねぇか。
(↑流石に此処まで字を細分化してやれば分かるだろ。分からなかったら、お前は国語から勉強し直し)
況してや『…』じゃ絞り込めてないどころか『不特定“無限”多数』解じゃねぇか。
やっぱり、お前は『多様性』と言う言葉を悪用し過ぎだわ。
588:132人目の素数さん
22/01/24 20:07:50.31 lYzA8f64.net
セタ爺が、ちょくちょく、都合良く重用絶賛したり、都合良く唾棄非難するYahoo!知恵袋より
超現実数って何でしょうか?小説に出てきたのですが、よく分かりませんでした。 - Yahoo!知恵袋
URLリンク(detail.chiebukuro.yahoo.co.jp)
> 二進法的に帰納的に空集合からスタートしてすべての実数やすべての超限順序数を含む無限大とか無限小などを含み、集合の枠に収まりきれないプロパークラスをなすものです。
> 感覚的には 0.000...≠0 で、したがって二進法的な表現では 0.111...≠1 になるような数0.111...が存在します。また、順序数としては定義されないω-1や1/ωに相当するものもあり、
> 順序数と違いω+1=1+ωなども成り立ちます。 このような無限大無限小も含む実数の拡張が簡単で自然に行うことができ、そこで実数での演算がそのまま成り立つような演算が
> 定義できるため、面白い対象だと思います。 詳しくは知りませんが、囲碁のヨセなどゲームの解析に応用もされているらしく、使い道があるのも驚きですね。 クヌースが超現実数を
> 小説で説明した本が大昔出ていて、その後再翻訳されたのが柏書房から「至福の超現実数」というタイトルで出版されました。今は両方古書でしか買えないようですが
> (新しい方があのネット通販だと定価の倍以上の値がついてました)、置いてある図書館はそれなりにあると思います。
589:132人目の素数さん
22/01/24 20:12:18.20 lYzA8f64.net
> また、順序数としては定義されないω-1や1/ωに相当するものもあり、順序数と違いω+1=1+ωなども成り立ちます。
はい。セタ爺は今回のYahoo!知恵袋の回答は都合悪いので、きっと重用絶賛せず唾棄非難するでしょう。
しかし、そんなもんは『此の世で空前絶後・唯一無二のセタ爺だけの数学妄想』にしか成らないけどねぇ~。
590:132人目の素数さん
22/01/24 20:23:29.78 lYzA8f64.net
ちなみに
> 0.000...≠0 で、したがって二進法的な表現では 0.111...≠1 になるような数0.111...が存在します。
此れは、正確には、『超現実数』は『超現実数』でも、『無限二色ハッケンブッシュゲーム』を『数表示』した段階であり
コンウェイは此処から更に『体』として完備になる様に性質を補完して『超現実数体』を構成している。
『体』と成った後者も、『体』と成る前の前者も、『超現実数』と呼ばれる。
(どこかの誰かに後者の『超現実数体』だけでなく前者の『超現実数』にも
区別が付き尚且つ意味を上手く表す一文字二文字を付け足して欲しいものだ)
591:江戸前寿司
22/01/24 20:29:11.61 .net
>>517
>Mの元を任意に1つとり(これをa1とおく),
>それに応じて定まる(x<a1を満たす)x∈Mをa2とおくとa2<a1となる.
>さらにこのa2∈Mに対して,
>上と同様にx<a2となるx∈Mが存在する.
>これをa3とおけば,a3<a2が成り立つ.
>これを繰り返してAの元の列(an)n∈Nを定めれば,
>これが示すべきものとなる
中卒の滋賀の馴れ寿司には分からんらしいが
選択公理を理解していれば、上記で選択公理を使っているとわかる
具体的にはMの任意の元aについて
Ma={x∈M|x<a}となる空でない集合が存在するから
選択公理により、aからMaのある元を選択する関数φが存在する
だからm>φ(m)>φ(φ(m))>φ(φ(φ(m)))>…という無限列が構成できる
このくらい速攻三秒で理解できないなら数学板に書くな いや数学板読むな
だいたい、高校レベルの>>457の円の有理点問題にもダンマリだし
中卒の滋賀の馴れ寿司にはIUTどころか、ピタゴラス数すら理解できないんだよwww
592:132人目の素数さん
22/01/24 20:29:43.25 lYzA8f64.net
繰り返し
> AT&Tベル研究所が提起した『2×1000の長方形の中に直径1の円は幾つ入るか』と言う問題が
> 『2011個か2012個かの何れか一方と迄は分かってるが其の後の2候補の内のどちらかはまだ分かっていない』って。
> 其の最後の2候補の内のどちらか分からない時点で未解決の扱いなんだよ。
此れは、便所虫セタ爺が言ってた『多様性を重んじる21世紀の数学』でも変わりゃしねぇよ此のボケ。
593:132人目の素数さん
22/01/24 21:48:30.98 LQGQ8Hjo.net
>>527
>が、0<・・<1/n<・・<1/2<1<・・<1+1/n<・・<1+1/2<1+1=2 と書いても間違いではない!ww
第2項(0の次の項)は何?
初項が無いなら初項を付け足せばよい?それでは問題が次の項に移動するだけです。
これをサルの浅知恵と云う
594:132人目の素数さん
22/01/24 21:50:25.04 LQGQ8Hjo.net
>>527
>数学的な本質は変わらない
おっしゃる通り!
数学的誤りという本質は初項を付け足しても変わりません!
595:132人目の素数さん
22/01/24 21:58:09.47 LQGQ8Hjo.net
>>528
>整列可能性定理の示すところ、任意の(お好みの)順序で、任意の集合E上に整列順序を構築できる
はい、大間違いです
>例えば、実数Rで、好きなr1を取る。残りの集合R\r1に対して、好きなr2を取る。繰り返すと
>抽象的な整列順序列 r1,r2,・・ができる
はい、大間違いです
整列順序も整列可能定理もまったく理解してませんね
ゼロ点で落第です
596:132人目の素数さん
22/01/24 22:02:37.31 LQGQ8Hjo.net
>>528
>初項r1が欲しければ、
>上記の通り、先にr1を取り出して、後はr1抜きの部分集合で列を考えれば良いだけのこと
初項を付け足しても第2項が無いので列の定義を満たしません
列とはNを定義域とする写像だと教えてあげましたよね?どこまで頭悪いんですか?
597:132人目の素数さん
22/01/24 22:10:47.67 /JG64l3y.net
まゆゆの博士審査、みんなも聞きに行くよね。。。?(*^^*)
598:132人目の素数さん
22/01/24 22:11:41.59 LQGQ8Hjo.net
>>528
>逆に、自然数Nとωを加えたN*=N∪{ω}は、整列集合で
>1,2,・・,ωとできる。この順序は、通常の不等号<と考えてよいから
ωの左隣は何?
>1<2<・・<ωとできる。
<ωの左隣は何?
>整列可能性定理、即ち選択公理を認めるならば(*)、この順序列の存在は否定できない
整列順序をまったく誤解してますね
まあ自分が正しいと思うなら上記問いに答えてみて下さい 論より証拠です
599:132人目の素数さん
22/01/24 22:13:25.63 /JG64l3y.net
まゆまゆまゆゆん!♪
まゆまゆゆん!♪
600:132人目の素数さん
22/01/25 01:22:12.69 H9lxYAJc.net
やはり猿魔大王はキレが違うな
601:132人目の素数さん
22/01/25 06:12:39.29 H9lxYAJc.net
人間もやめ馬と鹿の交雑種もやめ便所虫もやめ便食虫と化しクソとミソも一緒にするのが大好きなセタ爺へ念押し
順序数 1+ω=ω≠ω+1
超現実数 1+ω=ω+1
呉々も、順序数でのωと超現実数でのωとを一緒くたにすんなよー。
602:132人目の素数さん
22/01/25 07:34:04.30 sL7ge7v2.net
>>553
人違い…
603:132人目の素数さん
22/01/25 08:00:53.42 SS4tD7Fo.net
>>527 追加
列 (数学) 一般では、両側無限列あるいは双方向無限列 (doubly or bi-infinite sequence) が、存在する(下記)
初項いらんぜ
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
列 (数学)
定義
また、整数全体のなす集合からある集合への写像を
(..., a-2, a-1, a0, a1, a2, ...)
のように書いて、両側無限列あるいは双方向無限列 (doubly or bi-infinite sequence) と呼ぶ。 これは、負の整数で添字付けられた列を正の整数で添字付けられた列に接いだものと考えることができることによる名称である。
(引用終り)
以上
604:132人目の素数さん
22/01/25 10:39:56.56 u+zB7gNG.net
>>556 補足
>>513より再録
(引用開始)
A)松坂和夫の昇鎖の定義を分解すると、1)順序集合A、2)Aの部分集合の要素 (an)n∈N(=自然数)、3)全順序列 a1<a2<・・<an<・・
の3つの要素がある(順序の ”<” は、大前提とする)
B)降鎖も同様に、3つの要素があり、全順序列 a1>a2>・・>an>・・ となる点のみが、昇鎖と異なる
(引用終り)
ここで、添え字集合について N(自然数)→Z(整数)とできる
それは、両側無限列あるいは双方向無限列 (doubly or bi-infinite sequence) である(前記>>556)
そして、もっといろんな一般化(可算に限らず)が考えられている(下記)
そうして、全順序を表す記号 > についていえば、
有限集合→可算無限 N→双方向無限 Z → 非可算無限
と扱う集合の拡張(下記)に応じて、記法も拡張しなければならないよね
有限集合の記法を、無限集合に対して押し付ける人は、頭が固い
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
列 (数学)
一般化
「有向点族」および「族 (数学)」も参照
整列集合である自然数全体やその切片を順序数と考えるならば、通常の列は有限順序数 n または最小の超限順序数 ω で添字付けられていると考えることができる。このことから一般に、ある集合 X の元の集まりで、整列集合あるいは順序数によって添字付けられるものを広い意味で X の元の列と呼ぶことがある。特に極限数 α をとれば、α によって添字付けられる列を考えることができる。この語法では通常の(無限)列は ω で添字付けられた列ということになる。
列の概念は、添字集合となる整列集合を有向集合に取り替えて有向点族(あるいはネット)、一般の集合にとりかえて元の族の概念に一般化される。
つづく
605:132人目の素数さん
22/01/25 10:40:28.13 u+zB7gNG.net
>>557
つづき
URLリンク(ja.wikipedia.org)
有向点族(directed family of points)とは、点列を一般化した概念で、ムーア (Eliakim Hastings Moore) とスミス (H. L. Smith) により1922年に定義された[1]。有向点族はネット (net)、有向点列、 Moore-Smith 列などとも呼ばれる。
点列との違いは添え字にあり、点列が自然数という可算な全順序集合の元で添え字付けられるのに対し、有向点族はより一般的な順序集合である(可算または非可算な)有向集合の元で添え字付けられている。
有向点族の概念の利点として以下の2つがある:
・点列にある「可算性」、「全順序性」という束縛がなくなる。
・複数の収束概念を統一的に扱う事ができる
特に重要なのは、開集合、閉包、連続性などの位相構造に関する概念を有向点族の収束性で特徴づけられる事である。
(引用終り)
以上
606:132人目の素数さん
22/01/25 20:04:03.00 avDiBBxl.net
>>556
つまり定義域をNからZへ拡張すれば
> 二つの列を直列すれば、・・1/n・・,1/2,1,・・1+1/n・・,1+1/2,1+1=2 となる列ができる
が正当化できると言いたいの?
はい、完全な間違いです。ゼロ点で落第です。
もし正しいと言い張るなら1の次の項を答えてみて?
>何それw 初項は何? 1の次の項は何?(>>519)
607:132人目の素数さん
22/01/25 22:08:51.35 OS/mPN1I.net
環と違って角度は総合されるわ
608:132人目の素数さん
22/01/26 02:32:24.17 gqrpC6se.net
>>557
>そうして、全順序を表す記号 > についていえば、
>有限集合→可算無限 N→双方向無限 Z → 非可算無限
>と扱う集合の拡張(下記)に応じて、記法も拡張しなければならないよね
この頭悪そうな文章で何を言いたいのかと思いきや、<ωの左隣が無くてもよいと言いたいようだね。
はい、完全な間違いです。ゼロ点で落第です。
二項関係の定義は、集合の濃度によって場合分けされるなどということは無い。
>有限集合の記法を、無限集合に対して押し付ける人は、頭が固い
定義を都合よく改竄する人は頭が溶けている。
というかそれ以前に改竄後
609:の定義を示してすらいない完全な妄想ワールド。数学たり得ない。
610:132人目の素数さん
22/01/26 02:43:40.28 gqrpC6se.net
間違いを認めたくないあまり、「<ωの左隣は存在しなくてもよい」という結論ありきで数学の定義を無視し妄想ワールドへ逃避。
まったく愚かとしか言い様が無い。
611:江戸前寿司
22/01/26 06:27:29.18 .net
>>556
>初項いらんぜ
まさかのω初項拒否自爆オウンゴール
以下の2条件を否定したら馴れ寿司SET Aの完全敗北 SET A焼●
1.初項はω
2.0の項以外の任意の項に対して、次の項が存在
さ、上記2条件を満たす無限降下列の存在、示してもらおうかw
612:132人目の素数さん
22/01/26 06:33:49.60 q/0DRuxd.net
人間もやめ馬と鹿の交雑種もやめ便所虫もやめ便食虫と化したセタ爺お前
ωの前の順序数を答え続ける事から逃げてるだけだな
双方向無限数列で紛らわせてると思ったか?
まだ分からないか?お前が幾ら『多様性を重んじる21世紀の数学』を連呼しても解答を紛らわす事が出来てないって。
幾ら多様性だの多世界解釈選択公理だの連呼した所で>>540でも言ったが『2011個 Xor 2012個』じゃ未解決なんだよ。
早くテメェは『ωの1つ前の順序数ただ1つ』を答えろよ早くしろよ早くオラ何やってんだよ?
613:132人目の素数さん
22/01/26 06:33:53.90 q/0DRuxd.net
人間もやめ馬と鹿の交雑種もやめ便所虫もやめ便食虫と化したセタ爺お前
ωの前の順序数を答え続ける事から逃げてるだけだな
双方向無限数列で紛らわせてると思ったか?
まだ分からないか?お前が幾ら『多様性を重んじる21世紀の数学』を連呼しても解答を紛らわす事が出来てないって。
幾ら多様性だの多世界解釈選択公理だの連呼した所で>>540でも言ったが『2011個 Xor 2012個』じゃ未解決なんだよ。
早くテメェは『ωの1つ前の順序数ただ1つ』を答えろよ早くしろよ早くオラ何やってんだよ?
614:132人目の素数さん
22/01/26 06:53:57.17 q/0DRuxd.net
あーあ。『1~∞と書いても良いから∞[“無限”大]を有限自然数に含めてしまっても良い』と言う主張を
言い出して引っ込み着かなく成って、いつまで・いつまで、デタラメ[出鱈目]・デマ[出任せ]・大ホラ吹き[大法螺吹き]を
続けてるんだろ?
こんなん誰が見たって出任せで出鱈目を大法螺で吹き並べて廻ってるの至極明快じゃん
引っ込み着かないセタ爺のデマカセ、いつまで続くんだろ?完全に老害行動なんだけど。
615:132人目の素数さん
22/01/26 07:23:13.87 yzceE5A3.net
>>557 補足
(引用開始)
そうして、全順序を表す記号 > についていえば、
有限集合→可算無限 N→双方向無限 Z → 非可算無限
と扱う集合の拡張(下記)に応じて、記法も拡張しなければならないよね
有限集合の記法を、無限集合に対して押し付ける人は、頭が固い
(引用終り)
1.いま、順序集合Aとして、実数Rを考える。正の部分をR+={x|x>0, x∈R}とする。同様に、負の部分をR-={y|y<0, y∈R}とする
0に対して、∀y < 0 < ∀x と書ける。Rは連続だから、0の右隣も左隣もないが、何の問題もない
2.いま、順序集合Aとして、有理数Qを考える。正の部分をQ+={x|x>0, x∈Q}とする。同様に、負の部分をQ-={y|y<0, y∈Q}とする
0に対して、∀y < 0 < ∀x と書ける。Qは稠密だから、0の右隣も左隣もないが、何の問題もない
3.いま、順序集合Aとして、整数Zを考える。正の部分をZ+={x|x>0, x∈Z}とする。同様に、負の部分をZ-={y|y<0, y∈Z}とする
0に対して、∀y < 0 < ∀x と書ける。Zは離散だから、0の右隣は+1、左隣は-1となる
<結論>
・全順序を表す記号 < で、上記のように0に対して、右隣や左隣を考えたとき
整数Zでは存在するが、有理数Qや実数Rでは 右隣や左隣は存在しない(なお、0以外についても同様)
・それは、順序集合Aの性質によるのです
以上
616:132人目の素数さん
22/01/26 07:30:20.69 yzceE5A3.net
>>557 補足追加
(引用開始)
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
列 (数学)
一般化
「有向点族」および「族 (数学)」も参照
整列集合である自然数全体やその切片を順序数と考えるならば、通常の列は有限順序数 n または最小の超限順序数 ω で添字付けられていると考えることができる。このことから一般に、ある集合 X の元の集まりで、整列集合あるいは順序数によって添字付けられるものを広い意味で X の元の列と呼ぶことがある。特に極限数 α をとれば、α によって添字付けられる列を考えることができる。この語法では通常の(無限)列は ω で添字付けられた列ということになる。
(引用終り)
つまり
・通常の列は有限順序数 n または最小の超限順序数 ω で添字付けられていると考えることができる。
・一般に、ある集合 X の元の集まりで、整列集合あるいは順序数によって添字付けられるものを広い意味で X の元の列と呼ぶことがある。
・特に極限数 α をとれば、α によって添字付けられる列を考えることができる。
ここ、分からない人がいるみたいだね
百回音読してくださいw
617:132人目の素数さん
22/01/26 08:18:58.77 gqrpC6se.net
>>567
<ωの左隣が存在しなくてよい何の言い訳にもなってなくて草
618:132人目の素数さん
22/01/26 08:26:29.73 gqrpC6se.net
>>567
>1.いま、順序集合Aとして、実数Rを考える。正の部分をR+={x|x>0, x∈R}とする。同様に、負の部分をR-={y|y<0, y∈R}とする
> 0に対して、∀y < 0 < ∀x と書ける。Rは連続だから、0の右隣も左隣もないが、何の問題もない
>2.いま、順序集合Aとして、有理数Qを考える。正の部分をQ+={x|x>0, x∈Q}とする。同様に、負の部分をQ-={y|y<0, y∈Q}とする
> 0に対して、∀y < 0 < ∀x と書ける。Qは稠密だから、0の右隣も左隣もないが、何の問題もない
そもそもR上でもQ上でも通常の大小関係<は整列順序でないことは理解してる?
そもそもR上でもQ上でも二項関係<はその名の通り二項の関係であることは理解してる?
619:132人目の素数さん
22/01/26 08:40:33.68 gqrpC6se.net
>>568
>つまり
>・通常の列は有限順序数 n または最小の超限順序数 ω で添字付けられていると考えることができる。
>・一般に、ある集合 X の元の集まりで、整列集合あるいは順序数によって添字付けられるものを広い意味で X の元の列と呼ぶことがある。
>・特に極限数 α をとれば、α によって添字付けられる列を考えることができる。
>ここ、分からない人がいるみたいだね
>百回音読してくださいw
添字集合を適当に選べば<ωの左隣が存在しなくてもよいと言いたいの?
じゃあ 1<2<・・<ω なる<列の写像を φ:Λ→N∪{ω} と書くとき、Λとφは何?
言い訳はいいからズバリ答えて
620:132人目の素数さん
22/01/26 10:50:19.16 zHhgiUVe.net
>>527 補足
下記2つの列は、数学的には等価(単に記法の違いのみ)
0,・・,1/n,・・,1/2,1,・・,1+1/n,・・,1+1/2,1+1=2
↓↑
0<・・<1/n<・・<1/2<1<・・<1+1/n<・・<1+1/2<1+1=2
どちらも、全順序の増加列です
列の長さは、2ωになる
これが、本質ですw
621:132人目の素数さん
22/01/26 12:32:25.67 gqrpC6se.net
>>572
>0<・・<1/n<・・<1/2<1<・・<1+1/n<・・<1+1/2<1+1=2
「1<」の右隣が何か聞いてるのになぜ逃げるの?
>これが、本質ですw
逃げるなら本質的に誤りであると認めては?
622:132人目の素数さん
22/01/26 13:42:26.17 zHhgiUVe.net
>>572 補足の補足
ちょうど、望月 vs ショルツェ氏の論争もこんな感じかも
おれは、おサルさんはまもとに相手せず、勝手に自説を書く
これで、十分勝てると思っている
望月先生も、こんな感じだろうw
623:132人目の素数さん
22/01/26 15:39:50.18 gqrpC6se.net
勝手に書くのはいいけどチラシの裏にしてね
ここは数学板であなたの妄想ワールドを書く所じゃないから
624:132人目の素数さん
22/01/26 15:55:26.21 AZhf0f3L.net
【山形メンヘラシスターズおじさん速報】ハラスメント・ストーカー(aka長野在住トラクンス男)が、新作自己紹介文を投下【人種差別と病人差別の反社会性人格障害が顕著化】
URLリンク(blog-imgs-17.fc42.com)
URLリンク(sites.googelgroups.com)
894 名前:名無しさん@( ・∀・)つ旦~ :2022/01/26(水) 11:49:16.31 ID:gqrpC6se
このスレは女子トイレに侵入しようと試みた山形大学でばったり学生実験に出くわしてしまい居合わせた喪黒福造にドーンと成績Fを付けられて発狂してしまい長野県からリモートで15年に渡り山形の女性准教授宛に匿名掲示板でラブコールを送り続けている周囲の人にはただの気狂いとしか映らずボロを纏いその下は赤褌一枚で街を歩きつつ自分は「神」であり「魂のふるさと」であるというドトール出入り禁止のカンボジアの糖尿病おじさんことジンバブエの腸チフス専用の「愛」と「正義」を説き続けるスレです
625:132人目の素数さん
22/01/26 16:40:47.43 hbgHdQK0.net
>>576
あグロ
626:132人目の素数さん
22/01/26 18:53:45.71 .net
____
/ \ /\ キリッ
. / (ー) (ー)\ 「>>574おれは、**はまもとに相手せず、勝手に自説を書く」
/ ⌒(__人__)⌒ \
| |r┬-| |
\ `ー’´ /
ノ \
/´ ヽ
| l \
ヽ -一””””~~``’ー?、 -一”””’ー-、.
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒))
____
/_ノ ヽ、_\
ミ ミ ミ o゚((●)) ((●))゚o ミ ミ ミ だっておwwwwwwwwwwwwww
/⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\ /⌒)⌒)⌒) 「まもと」ってなんだよ チョーセンジンかよ
| / / / |r┬-| | (⌒)/ / / //
| :::::::::::(⌒) | | | / ゝ :::::::::::/
| ノ | | | \ / ) /
ヽ / `ー’´ ヽ / /
| | l||l 从人 l||l l||l 从人 l||l バンバン
ヽ -一””””~~``’ー?、 -一”””’ー-、
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒))
627:132人目の素数さん
22/01/26 18:59:18.64 .net
>>574
チョーセンから密入国した「まもと」クン曰く
>おれは、・・・勝手に自説を書く
>これで、十分勝てると思っている
なんだこの🐎🦌www
1.初項はω
2.0の項以外の任意の項に対して、次の項が存在
上記のどちらかを外した時点でボロ負けぇぇぇぇぇwwwwwww
整列順序理解できない全順序🐎🦌のニホンザルのボロ負けぇぇぇぇぇwww
628:132人目の素数さん
22/01/26 19:26:49.86 9a+HSZkr.net
痛いですね…これは痛い…
629:132人目の素数さん
22/01/26 22:03:53.48 q/0DRuxd.net
ポニョ猿爺ちゃーん、うえええん、SetA爺の救いが無いよぉ…此の壗じゃSetA爺ちゃん無間地獄に落ちちゃうよおおおお
ポニョ猿爺ちゃぁん、ねぇ、ポニョ猿爺ちゃぁん、うわぁあああん、無間地獄に堕ちるの見たく無いよおおお…
630:132人目の素数さん
22/01/27 06:13:16.22 .net
ポニョって誰だ?
>此の壗じゃSetA爺ちゃん無間地獄に落ちちゃうよお
SET Aは地獄の業火に焼かれて死ね!!!
631:132人目の素数さん
22/01/27 06:16:35.52 .net
URLリンク(ja.wikipedia.org)
阿鼻(あび)地獄 / 無間(むげん)地獄
地獄の最下層に位置する。
大きさは前の7つの地獄よりも大きく、
縦横高さそれぞれ2万由旬(8万由旬とする説もある)。
最下層ゆえ、この地獄に到達するには、
真っ逆さまに(自由落下速度で)落ち続けて2000年かかるという。
前の七大地獄並びに別処の一切の諸苦を以て一分として、
大阿鼻地獄の苦、1000倍もあるという。
剣樹、刀山、湯などの苦しみを絶え間(寸分・刹那)なく受ける。
背丈が4由旬、64の目を持ち火を吐く奇怪な鬼がいる。
舌を抜き出されて100本の釘を打たれ、
毒や火を吐く虫や大蛇に責めさいなまれ、
熱鉄の山を上り下りさせられる。
これまでの7つの地獄でさえ、
この無間地獄に比べれば夢のような幸福であるという。
632:132人目の素数さん
22/01/27 06:20:52.23 .net
Aviciこと阿鼻(あび)地獄に堕ちる者が犯した罪
殺生、盗み、邪淫、飲酒、
妄語(うそをつくこと)、
邪見(不正な誤った考えを持つこと)、
犯持戒人(尼僧・童女などへの強姦)、
父母・阿羅漢(聖者)殺害。
633:132人目の素数さん
22/01/27 07:40:50.15 fTQ+efrZ.net
>>557
>両側無限列あるいは双方向無限列 (doubly or bi-infinite sequence) である(前記>>556)
英語版にもあるよ
分からない人は
下記
「For example, the sequence (a_{n})_{n=1}^{∞ } is the same as the sequence (a_{n})_{n∈ N }, and does not contain an additional term "at infinity".」
を百回音読してくださいw
URLリンク(en.wikipedia.org)
Sequence
The limits ∞ and -∞ are allowed, but they do not represent valid values for the index, only the supremum or infimum of such values, respectively.
For example, the sequence (a_{n})_{n=1}^{∞ } is the same as the sequence (a_{n})_{n∈ N }, and does not contain an additional term "at infinity".
The sequence (a_{n})_{n=-∞ }^{∞ } is a bi-infinite sequence, and can also be written as (・・・ ,a_{-1},a_{0},a_{1},a_{2},・・・ ).
634:132人目の素数さん
22/01/27 07:43:19.00 fTQ+efrZ.net
>>585 補足
>The sequence (a_{n})_{n=-∞ }^{∞ } is a bi-infinite sequence, and can also be written as (・・・ ,a_{-1},a_{0},a_{1},a_{2},・・・ ).
これな
三歳児には難しいかもな
635:132人目の素数さん
22/01/27 10:11:
636:27.71 ID:K/vlCJ4I.net
637:132人目の素数さん
22/01/27 10:49:40.89 shhkAtxy.net
>>513 補足
(引用開始)
松坂和夫「集合・位相入門」(岩波 1968)
このP105 問題の2に
昇鎖の定義がある
順序集合Aの要素からなる列 (an)n∈N(=自然数)で、a1<a2<・・<an<・・
となるものを昇鎖という
降鎖は、この列の不等号が逆で、a1>a2>・・>an>・・
これ以外に、単なる列がある
この3つの差
A)松坂和夫の昇鎖の定義を分解すると、1)順序集合A、2)Aの部分集合の要素 (an)n∈N(=自然数)、3)全順序列 a1<a2<・・<an<・・
の3つの要素がある(順序の ”<” は、大前提とする)
B)降鎖も同様に、3つの要素があり、全順序列 a1>a2>・・>an>・・ となる点のみが、昇鎖と異なる
C)単なる列は、要素は1つで、列のみ。例えば、・・・,n1,n2,・・・,z1,z2,・・,q1,q2,・・・・,r1,r2,・・ (これは、数直線Rからランダムに数を選んで並べた列で、大小はランダム。列長さは連続濃度まで可)
(引用終り)
1.最も一般化された列とは、順序集合Aの要素からなる列 (aλ)λ∈Λで、ここに添え字集合Λは、極限数 α>>557などとできる
また、複数の列をつなげた列 (aλ)λ∈Λ + (bλ')λ'∈Λ'も考えられ、
また、ある列の並びを逆にして、つなげて、両側無限列あるいは双方向無限列 (doubly or bi-infinite sequence) (>>556)も可能である
また、Λは可算に限らず 非可算も可能です(有向点列>>558)
かように、添え字集合Λは 完全に自由と考えると、順序集合Aのある部分集合の元 aたちを その順序で並べたものといえる
2.さて、昇鎖とは、添え字集合Λ=N(自然数)であって、左から右に増加する 全順序列 a1<a2<・・<an<・・(増加関数と同じ) と、考えることができる
3.逆に、降鎖とは、添え字集合Λ=N(自然数)であって、左から右に減少する 全順序列 a1>a2>・・>an>・・(減少関数と同じ) と、考えることができる
この3つを、きちんと区別し 理解できていない
いや おそらくは理解する能力のない 三歳児レベルの人たちがいる
638:132人目の素数さん
22/01/28 01:51:27.61 XHv+DeMU.net
>>588
妄想はチラシの裏でお願いします
639:132人目の素数さん
22/01/28 02:05:06.81 XHv+DeMU.net
>>588
>また、複数の列をつなげた列 (aλ)λ∈Λ + (bλ')λ'∈Λ'も考えられ、
が妄想でなければ、(aλ)λ∈Λ + (bλ')λ'∈Λ'とやらを表す写像を答えて下さい。
有理数全体の集合Qは通常の大小関係<で全順序集合です。
>かように、添え字集合Λは 完全に自由と考えると、順序集合Aのある部分集合の元 aたちを その順序で並べたものといえる
が妄想でなければ、Qの元を昇順に並べたときの0の次の項を答えて下さい。
言い訳はいいのでズバリ答えて下さい。
もし答えられなければあなたの発言は妄想です。妄想はチラシの裏でお願いしますね。ここは数学板です。
640:132人目の素数さん
22/01/28 02:15:43.90 Ngy/VypR.net
金玉の裏を舐めてくださいお願いしますね
641:132人目の素数さん
22/01/28 06:20:40.73 .net
>>588
問い
1)…{{ }}…は集合?
2){{… …}}は集合?
3) …{{… …}}…は集合?
※ …は無限に続く状態を表すものとする
642:132人目の素数さん
22/01/28 06:30:47.97 .net
____
/ \ /\ キリッ
. / (ー) (ー)\ 「>>320 N→Z→Q→R→C」
/ ⌒(__人__)⌒ \
| |r┬-| |
\ `ー’´ /
ノ \
/´ ヽ
| l \
ヽ -一””””~~``’ー?、 -一”””’ー-、.
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒))
____
/_ノ ヽ、_\
ミ ミ ミ o゚((●)) ((●))゚o ミ ミ ミ だっておwwwwwwwwwwwwww
/⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\ /⌒)⌒)⌒) こいつアレフ1の構成方もしらねぇのかよwww
| / / / |r┬-| | (⌒)/ / / //
| :::::::::::(⌒) | | | / ゝ :::::::::::/
| ノ | | | \ / ) /
ヽ / `ー’´ ヽ / /
| | l||l 从人 l||l l||l 从人 l||l バンバン
ヽ -一””””~~``’ー?、 -一”””’ー-、
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒))
最小の非可算順序数
URLリンク(ja.wikipedia.org)
643:132人目の素数さん
22/01/28 07:44:33.71 341TuiYA.net
>>7 追加
> ”(スレ55 スレリンク(math板:158番)より)
> <上昇列 0<・・・<ω が有限列にしかなり得ない
> ことも分からん「考えなしの素人」に数学はムリ”
反例が見つかった(下記)w
下記のOrdinal arithmetic
・Addition で、... < 0'
・Multiplicationで、... < 01
・Exponentiationで、... < (0,1)
www
URLリンク(en.wikipedia.org)
Ordinal arithmetic
Addition
The first transfinite ordinal is ω, the set of all natural numbers. For example, the ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing 0' < 1' < 2' < ... for the second copy, ω + ω looks like
0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ...
This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors.
Multiplication
Here is ω・2:
00 < 10 < 20 < 30 < ... < 01 < 11 < 21 < 31 < ...,
which has the same order type as ω + ω.
Exponentiation
For instance, ω^2 = ω・ω using the operation of ordinal multiplication. Note that ω・ω can be defined using the set of functions from 2 = {0,1} to ω = {0,1,2,...}, ordered lexicographically with the least significant position first:
(0,0) < (1,0) < (2,0) < (3,0) < ... < (0,1) < (1,1) < (2,1) < (3,1) < ... < (0,2) < (1,2) < (2,2) < ...
Here for brevity, we have replaced the function {(0,k), (1,m)} by the ordered pair (k, m).
(引用終り)
以上
644:132人目の素数さん
22/01/28 09:18:39.79 .net
>>594
>反例が見つかったw
>下記のOrdinal arithmetic
>・Addition で、... < 0'
>・Multiplicationで、... < 01
>・Exponentiationで、... < (0,1)
問い
1. < 0'の左隣の項は?
2. < 01の左隣の項は?
3. < (0,1)の左隣の項は?
>www
ニホンザル、ついに狂った?
645:132人目の素数さん
22/01/28 10:20:39.06 XHv+DeMU.net
>>594
>This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors.
しっかり書いてありますね 。0'の前者は無いと。英語読めますか?
つまり
>0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ...
なる表記は<列ではないと。<列ならば二項関係<の定義に従い < 0' の左隣が存在する必要がありますから。
コピペバカには理解不能かな?
646:132人目の素数さん
22/01/28 11:52:07.62 OCJDS5eR.net
>>595-596
三歳児知能のおサルさんたち、馬脚を現す(サルと馬では 形容矛盾だがw)
二項関係で、集合に全順序を定義できる
有限集合に、全順序を拡大定義できる
可算無限集合たる自然数Nにも、全順序を定義できる
自然数Nを超えて、Ordinal numbers(順序数) にも、全順序を定義できる
必然、”0' do not have direct predecessors.”>>594のような状態(極限順序数の場合)も出現するが、全順序はそのまま定義できて、不等号 < のそのまま使えるってことですよ
それは、扱う集合が、有限集合→ω=自然数N(最小の加算無限)→順序数α
あるいは、有限集合→N→Q(有理数(稠密))→R(実数(連続))
と変遷しても、全て 不等号 < を使った全順序を与えることができて
その扱う集合に合わせて、二項関係たる 不等号 < の記法も自然に拡張され、それぞれに応じて 無限集合を扱うように発展してきたってことです
カントールが、19世後半に無限集合論を考えて以来、100年以上かけて、時代時代の数学者が考えてきたこと
まあ、三歳児知能のおサルさんたちには、ここは理解は難しいだろうねw
647:132人目の素数さん
22/01/28 12:16:03.70 XHv+DeMU.net
>>597
数学板で発言したいなら、順序関係の定義・二項関係の定義を確認しなさい
妄想を語りたいなら数学板から去りなさい
三歳児じゃないんだからどちらかにしなさい
648:132人目の素数さん
22/01/28 12:23:08.33 .net
>>597
こいつ正真正銘の🐎🦌だな(嘲)
問い
1. Zは整列順序集合でない その理由を答えよ
2. 非負の有理数Q+、非負の実数R+はいずれも整列順序集合でない
その理由を答えよ
ま、中卒の🐎🦌には無理か
ギャハハハハハハ!!!
649:132人目の素数さん
22/01/28 12:28:14.36 .net
中卒🐎🦌のニホンザルは、一万遍死んでも理解できない文章
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
整列集合
出典: フ�
650:梶[百科事典『ウィキペディア(Wikipedia)』 数学において、整列順序集合または整列集合(英: wellordered set)とは、 整列順序を備えた集合のことをいう。 ここで、集合 S 上の整列順序関係 (wellorder) とは、 S 上の全順序関係 "≤" であって、 S の空でない任意の部分集合が 必ず ≤ に関する最小元をもつものをいう。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
651:132人目の素数さん
22/01/28 12:32:04.66 XHv+DeMU.net
>>597
>その扱う集合に合わせて、二項関係たる 不等号 < の記法も自然に拡張され
こんなことはコピペ元に書かれてませんが?嘘だと思うなら書かれてる個所を抜粋してごらんなさい
妄想を語りたければチラシの裏でお願いしますね、ここは数学板です
652:132人目の素数さん
22/01/28 14:58:08.55 OCJDS5eR.net
全順序と整列の区別がつかないサルへ
鎖(さ、英: chain)の説明もある(下記)
URLリンク(ja.wikipedia.org)
全順序
全順序(英: total order)とは、集合での二項関係で、推移律、反対称律かつ完全律の全てを満たすもののことである。
単純順序(たんじゅんじゅんじょ、英: simple order)、線型順序(せんけいじゅんじょ、英: linear order)とも呼ばれる。
集合と全順序を組にしたものは、全順序集合 (totally ordered set), 線型順序集合 (linearly ordered set), 単純順序集合 (simply ordered set) あるいは鎖 (chain) と呼ばれる。
即ち、集合 X が関係 ≦ による全順序をもつとは、X の任意の元 a, b, c に対して、次の3条件を満たすことである:
・反対称律:a ≦ b かつ b ≦ a ならば a = b
・推移律:a ≦ b かつ b ≦ c ならば a ≦ c
・完全律(比較可能):a ≦ b または b ≦ a の何れかが必ず成り立つ
反対称性によって a < b かつ b < a であるという不確定な状態は排除される[1]。完全性を持つ関係は、その集合の任意の二元がその関係で比較可能(英語版)であることを意味する。これはまた、元を直線に並べた図式によってその集合が表せるということでもあり、それは「線型」順序の名の由来である[2]。また完全性から反射性 (a ≦ a) が出るから、全順序は半順序の公理を満たす。半順序は(完全性の代わりに反射性のみが課されるという意味で)全順序よりも弱い条件である。与えられた半順序を拡張して全順序をえることは、半順序の線型拡張(英語版)と呼ばれる。
つづく
653:132人目の素数さん
22/01/28 14:59:07.11 OCJDS5eR.net
>>602
つづき
例
・実数全体の成す集合 R は通常の大小関係 ("<" あるいは ">") によって全順序付けられる。従ってその部分集合としての、自然数全体の成す集合 N, 整数全体の成す集合 Z, 有理数全体の成す集合 Q なども全順序集合になる。これらは何れも、ある性質に関して最小の全順序集合として(同型を除いて)唯一の例を与えることが示せる(ここで、全順序集合 A がある性質に関して「最小」とは、同じ性質を持つ任意の B に対して A に順序同型な B の部分集合が存在することをいう)。
・N は上界を持たない最小の全順序集合である。
・Z は上界も下界も持たない最小の全順序集合である。
・Q は R の中で稠密となる最小の全順序集合である。ここでいう稠密性は a < b なる任意の実数 a, b に対し、a < q < b となる有理数 q が必ず存在することを言う。
・R は順序位相(後述)に関して連結となる最小の非有界全順序集合である。
・順序体は定義により全順序である。これは有理数体 Q や実数体 R を包括する概念である。
関連する概念
鎖
全順序の同義語としても用いられる鎖(さ、英: chain)は、また適当な半順序集合の全順序部分集合に対しても用いられる。後者の�
654:モ味での鎖はツォルンの補題で極めて重要な役割を果たす。 例えば整数全体の成す集合 Z に包含関係で半順序を入れた半順序集合を考えると、自然数 n に対し、n 以下の自然数全体の成す部分集合 In からなる集合族 {In | n は自然数} はこの順序に関する鎖、すなわち包含関係に関する全順序部分集合になる。実際、n ≦ k ならば In は Ik の部分集合である。 (引用終り) 以上
655:132人目の素数さん
22/01/28 15:42:36.79 .net
>>602
>全順序と整列の区別がつかないサル
それは中卒の貴様じゃんwww
で、なんで全順序のコピペしかしないの
整列順序の文章が理解できないから? 貴様🐎🦌?
鎖とか関係ないじゃん 貴様🐎🦌
>>600読んで、どこがどう理解できないのか云ってみ?
「S 上の全順序関係 "≤" であって、
S の空でない任意の部分集合が
必ず ≤ に関する最小元をもつもの」
が理解できないの?
自分より大きな要素全体の集合が
最小元もたなかったから、
後者が存在しねぇじゃん
そんな初歩も理解できないの? マジで🐎🦌なの?
656:132人目の素数さん
22/01/28 15:45:20.79 .net
中卒🐎🦌は以下も理解できねぇんだろ?
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
順序集合 X が全順序集合である場合、以下の条件はどれも互いに同値。
1.X は整列集合である。つまり、空でない任意の部分集合が最小元を持つ。
2.X の全体で超限帰納法が有効である。
3.X の元からなる任意の狭義単調減少列は必ず有限な長さで停止する。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
657:132人目の素数さん
22/01/28 16:19:37.92 XHv+DeMU.net
>>604
>>全順序と整列の区別がつかないサル
>それは中卒の貴様じゃんwww
完全同意
658:132人目の素数さん
22/01/28 17:11:23.21 OCJDS5eR.net
さて
Inter-universal geometry と ABC予想 (応援スレ) 61
スレリンク(math板:14番)
URLリンク(hissi.org)
必死チェッカーもどき 数学 > 2021年11月06日 > 36fx/MEI
次号の「数学」に星さんの論説が載りますね
日本の数学者を語るスレ
708 :132人目の素数さん[]:2021/11/06(土) 13:39:09.36 ID:36fx/MEI
数学 74巻1号 予定
論説
星裕一郎:遠アーベル幾何学の進展
五味清紀:トポロジカル絶縁体入門
ートポロジーの視点からー
-------------------------------------------
このほか、企画記事、書評、学会ニュース等が掲載
される予定です。
(引用終り)
上記の「論説 星裕一郎:遠アーベル幾何学の進展」は、どうかな?
そろそろ、「数学 74巻1号」が 発行されている時期ですが
つづく
659:132人目の素数さん
22/01/28 17:13:33.35 OCJDS5eR.net
>>607
つづき
脱線ですが下記
URLリンク(www2.yukawa.kyoto-u.ac.jp)
差出人: Hiraku Nakajima
件名: [MugenML 1633] Re: 数学論説原稿
日付: 2022年1月24日 11:00:22 JST
皆様
本日の arXiv をご覧になった方は気がついたかと思いますが,先日のメールで
書いたことと反して,arXiv に原稿を投稿しました.メーリングリストに送った
あとに編集部から訂正があり,arXivに投稿しても構わない,と許可があった
ためです.結果的に不必要なメールをメーリングリストに流すことになり申し訳
ありませんでした.
中島
件名: [MugenML 1632] 数学論説原稿
日付: 2022年1月20日 8:44:15 JST
皆様
Kavli IPMUの中島啓です.
雑誌数学の論説
超対称性ゲージ理論のクーロン枝の数学�
660:I定義とKac-Moody リー環の幾何学的佐武対応 の原稿を私のウェブサイト https://member.ipmu.jp/hiraku.nakajima/TeX/coulomb_sugaku_arxiv.pdf (超対称性ゲージ理論のクーロン枝の数学的定義と??孃??????リー環の幾何学的佐武対応) にアップロードしましたので,お知らせ申し上げます. ご意見,感想頂けましたら幸いです. 編集部に問い合わせたところ,arXivにはアップロードしないように指示されました. メーリングリストで論文のアナウンスをするのはあまり例がないかと思いますが, そういう事情ですのでご理解頂ければ幸いです. なお,次回の数学会の年会の企画特別講演では,この論説の内容の後半部分について 講演をさせていただく予定です. (引用終り) 余談ですが https://www.kurims.kyoto-u.ac.jp/~toshi/jjm/JJMJ/JJM_JHP/jjm-index_jp.htm Official Journal of the Mathematical Society of Japan 編集委員 小野 薫(京大数理研) 河東 泰之(東京大学) 熊谷 隆(京大数理研) 小林 俊行(東京大学) 斎藤 毅(東京大学) 中島 啓(東大IPMU) ここの、小野 薫先生 次期数理解析研究所長とありますね https://twitter.com/math_jin?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor https://www.kurims.kyoto-u.ac.jp/ja/ 2022/1/24 次期数理解析研究所長に 小野 薫 教授を選出しました (引用終り) 以上 (deleted an unsolicited ad)
661:132人目の素数さん
22/01/28 23:48:58.42 341TuiYA.net
>>513 補足
(引用開始)
松坂和夫「集合・位相入門」(岩波 1968)
このP105 問題の2に
昇鎖の定義がある
順序集合Aの要素からなる列 (an)n∈N(=自然数)で、a1<a2<・・<an<・・
となるものを昇鎖という
(引用終り)
1)>>7の上昇列 {1,2,3,・・・}∪{ω} | N={1,2,3,・・・} → (1,2,3,・・・,ω)
で、上記松坂の昇鎖の定義を当てはめると
a1=1,a2=2,a3=3,・・・ となり、列 N=(1,2,3,・・・)の部分で 添え字集合 n∈N(=自然数)を使い果たしてしまい、ωに届かない
つまり、上昇列 (1,2,3,・・・,ω)は、松坂の定義の昇鎖ではない!
2)一方、添え字集合をN → N∪{ω}={1,2,3,・・・,ω} へ拡張すれば、下記真の単調増加列の意味で昇鎖である>>603
(なお,列(1,2,3,・・・,ω)は、当然無限長列である)
(参考)
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
列 (数学)
列a はその項を明示して(a1, a2, ...)のように表記される事もある。また簡単に (an) 、(an)n と記す方法もしばしば用いられる。
順序構造と単調性
「単調写像」も参照
列の項全体が、ある順序集合の部分集合を成すとき、単調列の概念を考えることができる。
列 (an) が(広義の)単調増加列または単調増大列 (monotonically increasing sequence) であるとは、
i < j ⇒ ai ≦ aj
を満たすことをいう(今の場合これは「どの項も直前の項以上となっていること」といっても同じである)。また、
i < j ⇒ ai < aj
つまり、どの項も直前の項より真に大きいときには、その列は真の(あるいは狭義の)増大列 (strictly monotonically increasing) という。
一般化
一般に、ある集合 X の元の集まりで、整列集合あるいは順序数によって添字付けられるものを広い意味で X の元の列と呼ぶことがある。特に極限数 α をとれば、α によって添字付けられる列を考えることができる。この語法では通常の(無限)列は ω で添字付けられた列ということになる。
(引用終り)
662:132人目の素数さん
22/01/29 01:58:36.20 vDIa2pb+.net
>>609
>つまり、どの項も直前の項より真に大きいときには、その列は真の(あるいは狭義の)増大列 (strictly monotonically increasing) という。
じゃダメじゃん
ωの直前の項が無いんだから
バカ?
663:132人目の素数さん
22/01/29 03:58:13.79 ynd1YKvE.net
セタ爺って本当にバカだな。不等号を使って表現できる事や、双方向無限列の存在する事、
ただそれだけの事で、何を答えられて�
664:驪Cに成ってるんだ? そんな事で「末項の1つ手前の項や初項を示さず『…』に紛らわせた混ざり物だらけ回答」が 解として成立する理由なんかには成ってない。 結局、今日もまたセタ爺は suc(n)=ω なる n つまり ω を後続順序数とする順序数 n を 答える事から逃げる理由の捏造に言葉ならぬコピペ誤引用を尽くし、時間と手間を浪費しただけに過ぎないわけか。 やっぱり人権以外に人間としての価値が無い動物だな、セタ爺は。 要するに、人間もやめ馬と鹿の交雑種もやめ便所虫もやめ便食虫に成り果てた不潔の極み動物だな。 >>602 セタ爺それ、自らの主張を否定する事実だって事に気付いてるか?自爆おめでとう。
665:132人目の素数さん
22/01/29 05:16:04.63 ynd1YKvE.net
不等号が使えても全要素無欠明示が出来なきゃ無駄
結局、セタ爺の言う「 {0,1,2,3,…,ω} 」って、砕けた書き方どころか崩し過ぎて誤った書き方で
正しくは「 {0,1,2,3,…},{ω} 」であって、つまり「 N+{ω} 」の事で
何をどうやったって矢張り ω は N の要素なんかには成りはしないんだよな。
やっぱりセタ爺は Σ[k=1,∞]k は正しく書いた lim[n→∞]Σ[k=1,n]k を崩して砕けた書き方である事を知らない事にしろ
更に調子に乗って平然と ω を N に含む解釈も存在すると正気の本気の底意地の本音で思い込んでる事にしろ
セタ爺は此の世の全ての事物に対する理解の仕方が徹頭徹尾に崩して砕けた解釈なんだな。
崩さず砕かない書き方で手抜かり無い解釈をすれば ∞ や ω が finite や N に含まれ様が無い事は
『“自”ずと“明”らか』なのに。
わざわざ何でセタ爺は万人公知かつ先験自明の理を『理屈を“捏”ね繰り回して濫“造”』するんだろ?
都合よく考え過ぎだろ。矢張り自己愛性人格障害だと精神衛生上防衛本能が強過ぎて
節操も際限も無く捏造し続け、反省も自戒もせず開き直り続ける動物に成り下がるんだな。
バカだろ。セタ爺の言う『多様性を重んじる21世紀』こそ、より細分かつ正確に解釈して行かなきゃいけないのに
セタ爺のやってる事と言えば真逆の『“有限”と“無限”の混同』ばかり。
セタ爺は自分の信念である『多様性を重んじる21世紀の数学』にも背く 「『《“逃げ解釈”》』」の精神なんだな。
数学板に現れてから言ってる事とやってる事が全て裏目、全て矛盾。
本当にセタ爺は人権以外に無価値な純然たる公害なる不潔動物。
666:132人目の素数さん
22/01/29 05:34:10.81 ynd1YKvE.net
そうだよな、こんな言い訳ですら無い正当化工作捏造曲解してばかりで
トドメを刺された事に気付いても「ここは嘘偽り風説の流布が横行する便所の落書き2ちゃんねる改め5ちゃんねる、
嘘を書いても問題無し」(セタ爺の過去発言)の無法かつ糞垂れ流しレベルの無節操で無際限に開き直り続ける、動く汚物。
そうだよな、そんな動く汚物が、そうだよな。働けるはずがねぇや。連動共同は不能、マイペース共同も不能、自営も不能。
やはり人権以外に無価値もとい負価値な人間をやめ馬と鹿の交雑種もやめ便所虫もやめ便食虫と化した動く汚物だな。
しかも、便食虫なら便食だけさせてりゃ良いかと思いきや、蛆とは逆に更に悪臭不浄害毒化した便にする。矢張り公害。
667:132人目の素数さん
22/01/29 07:49:40.15 2PdAu/y1.net
>>607 追加
URLリンク(www.fujisan.co.jp)
数学 最新号:2022年1月号 (発売日2022年01月28日) 岩波書店.
表紙画像 URLリンク(img.fujisan.co.jp)
表紙画像の目次を見ると
論説 遠アーベル幾何の進展 星裕一郎 P1
とあるね
なるほどね
668:132人目の素数さん
22/01/29 07:58:36.85 2PdAu/y1.net
>>610
>>つまり、どの項も直前の項より真に大きいときには、その列は真の(あるいは狭義の)増大列 (strictly monotonically increasing) という。
>じゃダメじゃん
>ωの直前の項が無いんだから
なんだ?
おまえ、そんなところで躓いているのか?w
”∀n∈N(自然数)で、n < ω ” と考えれば良い
それは、実数で
∀r∈R-(負の実数) 、 r < 0 と同じだよ
まあ、君には難しいかもね
二項関係を、稠密集合Qや、連続のRに拡大したときには
上記と同様のことが起きる
中学校でしっかり勉強してねw
669:132人目の素数さん
22/01/29 08:28:46.70 2PdAu/y1.net
>>615 補足
まあ、下記でも百回音読してくださいね
”For instance, the ordinal number of the set N of all positive integers, ordered by the relation ≦, is ω.
The ordinal number of the set consisting of 1 and numbers of the form 1-1/n where n∈N, ordered by the relation ≦, is ω+1.”
これで、上記の” 1 ”の左の直前はない。1-1/n |n∈N ですからね
でも、≦による二項関係は、ω+1なる列に拡張されている (” ordered by the relation ≦, is ω+1”)
君らには、難しいかなw
URLリンク(encyclopediaofmath.org)
encyclopediaofmath
Ordinal number
The order type of a well-ordered set.
This notion was introduced by G. Cantor in 1883 (see [2]).
For instance, the ordinal number of the set N of all positive integers, ordered by the relation ≦, is ω.
The ordinal number of the set consisting of 1 and numbers of the form 1-1/n where n∈N, ordered by the relation ≦, is ω+1.
670:132人目の素数さん
22/01/29 08:39:45.53 .net
☆曰く
「昨日の「1論説」とは,『遠アーベル幾何学の進展』という題で,
『数学』に掲載予定,2018年2月に依頼を引受け2019年2月に提出しました.
今となれば2019年3月以降の進展を組み込めなかった事が残念ですが,
この残念は,時が止まらない限り不可避ですし,
何より分野がきちんと動いている証左でしょう.」
望月論文のアクセプトに関する言及から、うまく逃げたな
671:132人目の素数さん
22/01/29 08:45:33.48 ynd1YKvE.net
うわ、まだ此の便食虫セタ爺は N と ω との間のミッシングリンクの存在に気付けないのか
672:132人目の素数さん
22/01/29 09:32:51.49 2PdAu/y1.net
>>614 追加
J-STAGEに、過去分あるけど(下記)
フィールズ賞 Peter Scholze氏の業績
2020 年 72 巻 1 号 p. 36-42
発行日: 2020/01/24
公開日: 2022/01/25
だから、2年遅れか
URLリンク(www.jstage.jst.go.jp)
J-STAGEトップ/数学/巻号一覧
最新号
72 巻 (2020)
1 号 p. 1-
<PDF>
URLリンク(www.jstage.jst.go.jp)
フィールズ賞受賞者紹介
Peter Scholze氏の業績
今井 直毅
2020 年 72 巻 1 号 p. 36-42
発行日: 2020/01/24
公開日: 2022/01/25
673:132人目の素数さん
22/01/29 09:50:36.43 2PdAu/y1.net
>>617
>「昨日の「1論説」とは,『遠アーベル幾何学の進展』という題で,
> 『数学』に掲載予定,2018年2月に依頼を引受け2019年2月に提出しました.
> 今となれば2019年3月以降の進展を組み込めなかった事が残念ですが,
> この残念は,時が止まらない限り不可避ですし,
> 望月論文のアクセプトに関する言及から、うまく逃げたな
ありがとう
星論説原文をみていないので、推測だが
1.「2019年3月以降の進展」は、南出の明示公式のことでは?
2.望月論文のアクセプトについては、既定路線で織込み済みと思うよ
でも、「2019年2月に提出しました」が、2022年1月号掲載か?
印刷
674:直前、あるいは編集会議直前まで、リバイズ可にすべきと思うけどね(星先生が手直しする気があればだが)
675:132人目の素数さん
22/01/29 09:59:20.62 ynd1YKvE.net
>>615-616
おいSetA爺
∪[k=1,∞]k
は『自然数の集合』じゃねぇよ、『アフィン拡大自然数の集合』だよ此の現実逃避便食虫野郎が。
アフィン拡大実数の集合が
_
R
とオーバーライン(  ̄ )付き R で書かれるから
アフィン拡大自然数、アフィン拡大整数、アフィン拡大有理数は
_
N
だな。単なる自然数の集合 N とは違う。また、超実数の集合 *R に属す 超自然数の集合 *N とも異なる。
やっぱり『多様性を重んじる世紀の21世紀の数学』も、細分化かつ正確な区別で解釈すべきだな。
老子も『必ずや名を正さんか!』と説いた様にな。SetA爺みたいに『有限と無限を一緒にする』様な
『ミソとクソを一緒にする』便食虫行為こそ、全く以てSetA爺が謳う『多様性を重んじる21世紀の数学』に反する行為だな。
矢っ張り、SetA爺は人間をやめ馬と鹿の交雑種もやめ便所虫もやめ便食虫に成り果てた世界共通公害だな。
676:132人目の素数さん
22/01/29 10:00:28.18 vDIa2pb+.net
>>615
>”∀n∈N(自然数)で、n < ω ” と考えれば良い
じゃ 0<・・・<ω は有限列じゃん
nがどんな自然数でもn以下の自然数は有限個なんだから
バカ?
677:132人目の素数さん
22/01/29 10:06:01.02 vDIa2pb+.net
>>615
>二項関係を、稠密集合Qや、連続のRに拡大したときには
>上記と同様のことが起きる
また妄想か
二項関係の定義書いてみな? ほれ、手を動かして書いてみろ
バカは手を動かすんだよ、頭悪いから頭で考えてもダメ
678:132人目の素数さん
22/01/29 10:08:18.42 ynd1YKvE.net
>>622
> バカ?
それはSetA爺は人間をやめ馬鹿つまり馬と鹿の交雑種だった頃の話、
今は馬鹿もやめ便所虫もやめ便食虫と成り果てた。と言うか便食虫の座からも落ちそうだ。
食した糞を更に強毒悪臭不浄化した糞として排泄するから。蛆は逆に食した糞を浄化して排泄するのに。
679:132人目の素数さん
22/01/29 10:23:59.23 vDIa2pb+.net
>>616
>上記の” 1 ”の左の直前はない。
じゃ≦列にならんやん、x≦1のxが無いんだからw
実際
>”For instance, the ordinal number of the set N of all positive integers, ordered by the relation ≦, is ω.
>The ordinal number of the set consisting of 1 and numbers of the form 1-1/n where n∈N, ordered by the relation ≦, is ω+1.”
のどこにも≦列なんて書かれてない 英語読めんのか?w
680:132人目の素数さん
22/01/29 10:42:22.01 2PdAu/y1.net
>>618
>N と ω との間のミッシングリンクの存在に気付けないのか
ミッシングリンク?
なんだ、それ?w
不等号 < を、そんなに狭く解釈したら
実数 r∈R なんて、至るところ ミッシングリンクだらけだぜ
普通の全順序で、rの直前と直後は存在しないぜ
でも、実数 r∈R 連続だよ
そもそも、ミッシングリンクなんて考えたら
下記のデデキント切断が理解できない
デデキント切断には、ミッシングリンクなんて、登場しないぜwww
URLリンク(ja.wikipedia.org)
デデキント切断
デデキント切断(デデキントせつだん、英: Dedekind cut)、あるいは単に切断 (独: Schnitt) とは、リヒャルト・デデキントが考案した数学的な手続きで、実数論の基礎付けに用いられる。
定義
全順序集合 K を、一方が他方の全ての元よりも小であるような二つの組に分けたとする。
K = A ∪ B, A ≠ Φ, B ≠ Φ; a ∈ A, b ∈ B ⇒ a < b.
このような組 (A, B) をデデキント切断という。
概論
以下では全順序集合Kとして有理数をとり、「切断が一つの数を確定する」ことを公理に採用して有理数の"隙間"を埋める形で、実数を構成する。仮に上記のA,Bをそれぞれ下組、上組としておく。
有理数の切断を与えることで、切断に対応する実数をただ一つ定めることができる。
681:132人目の素数さん
22/01/29 11:07:36.92 ocBYH1Ei.net
↑
ここまで長野のキチガイジジイの自演
次から自演が再開
↓
682:132人目の素数さん
22/01/29 11:31:55.83 .net
中卒ニホンザルは降下列の条件が理解できんらしい
単に任意の
683:項について自身より右のどの項も 自身より小さければいいと思ってる (だから全順序ばかり🐎🦌の一つ覚えで繰り返す) しかし、降下列は以下の2条件を満たす必要がある 1.初項が存在する 2.任意の項mについて、そのすぐ右の項である次項nが存在し、m>nである 上記2条件を満たす順序数列は有限長 つまり有限項数で0に達する いかにバカでかい順序数であってもそうなる それが数学 中卒ニホンザルは数学の初歩も理解できん正真正銘の🐎🦌wwwwwww
684:132人目の素数さん
22/01/29 11:44:09.74 ynd1YKvE.net
長野じゃねぇよ広島安芸だ大莫迦野郎
便食尚更不浄化便排泄虫SetA爺は関西圏だろ
猿魔大王ポニョ腹Papiyasは都内だか神奈川だかの大学を出たらしいが住まいが何処かは知らん
極稀に現れる自称おっちゃん(もうおっちゃんじゃねぇ、じっちゃんだよな)も住まいは何処か知らん
685:132人目の素数さん
22/01/29 11:48:44.53 ynd1YKvE.net
>>626 > 不等号 < を、そんなに狭く解釈したら
> 実数 r∈R なんて、至るところ ミッシングリンクだらけだぜ
> 普通の全順序で、rの直前と直後は存在しないぜ
スポポポポポポーン!!!
。 。
。。 。 。。゚
。 。。゜。゚。。
/ // / /
( Д ) Д)Д))
スパパパパパパーン!!!!!
+ ,, * +
" +※" + ∴ * ※ *
* * +※ ゙* ※ * +
+ "※ ∴ * + * ∴ +
* ※"+* ∵ ※ *"
( Д ) Д)Д))
莫迦の宇宙インフレーションじゃあ~!!!!!!
686:132人目の素数さん
22/01/29 11:53:17.48 ynd1YKvE.net
>>626 > そもそも、ミッシングリンクなんて考えたら
> 下記のデデキント切断が理解できない
> デデキント切断には、ミッシングリンクなんて、登場しないぜwww
どうしてこんなになるまで放っておいたんだ!
三 三三
/;:"ゝ 三三 f;:二iュ 三三三
三 _ゞ::.ニ! ,..'´ ̄`ヽノン
/.;: .:}^( <;:::::i:::::::.::: :}:} 三三
〈::::.´ .:;.へに)二/.::i :::::::,.イ ト ヽ__
,へ;:ヾ-、ll__/.:::::、:::::f=ー'==、`ー-="⌒ヽ
. 〈::ミ/;;;iー゙ii====:::::::.` Y ̄ ̄ ̄,.シ'=llー一'";;;ド'
};;;};;;;;! ̄ll ̄ ̄:::::::::.ヽ\-‐'"´ ̄ ̄ll
手の施し様が無く成ってしまってるぞ!
687:132人目の素数さん
22/01/29 11:58:46.08 vDIa2pb+.net
>>626
>不等号 < を、そんなに狭く解釈したら
解釈の問題じゃねえよ
定義の問題だよ
だから言ってるだろ?二項関係の定義を書けと
バカは手を動かず頭で妄想するから間違える
688:132人目の素数さん
22/01/29 12:00:12.59 ynd1YKvE.net
便食後尚更不浄化便排泄虫セタ爺のガキ(※)、超実数と言うか超現実数の感覚で順序数を曲解してやがんな。
超限序数1+ω=ω≠ω+1を超現実数同様1+ω=ω+1≠ωに無理やり曲解してやがる。
こりゃまた猿魔大王ポニョ腹Papiyasにロティサリーグリル焼きにされるな。
689:132人目の素数さん
22/01/29 12:02:15.15 ynd1YKvE.net
※関西の特に大阪では歳上だろうと爺だろうと糞ガキな奴には「あんのガキゃああ」と激昂する
690:132人目の素数さん
22/01/29 12:04:42.69 vDIa2pb+.net
>>626
>不等号 < を、そんなに狭く解釈したら
解釈の余地があるという考えが根本的間違い
ある命題は人によって真だったり偽だったりするんか?それ数学か?
691:132人目の素数さん
22/01/29 14:53:00.14 2PdAu/y1.net
>>635
だから、下記の記法が標準だろ?www
( 不等号 < で、具体的な すぐ右がどうの、左がどうの は、不要!w )
いろんな流儀が存在する場合もありだが、自分の幼稚な流儀をごり押ししなさんなw
(>>594より)
URLリンク(en.wikipedia.org)
Ordinal arithmetic
Addition
The first tra
692:nsfinite ordinal is ω, the set of all natural numbers. For example, the ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing 0' < 1' < 2' < ... for the second copy, ω + ω looks like 0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ... This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors. Multiplication Here is ω・2: 00 < 10 < 20 < 30 < ... < 01 < 11 < 21 < 31 < ..., which has the same order type as ω + ω. Exponentiation For instance, ω^2 = ω・ω using the operation of ordinal multiplication. Note that ω・ω can be defined using the set of functions from 2 = {0,1} to ω = {0,1,2,...}, ordered lexicographically with the least significant position first: (0,0) < (1,0) < (2,0) < (3,0) < ... < (0,1) < (1,1) < (2,1) < (3,1) < ... < (0,2) < (1,2) < (2,2) < ... Here for brevity, we have replaced the function {(0,k), (1,m)} by the ordered pair (k, m). (引用終り)
693:132人目の素数さん
22/01/29 15:20:36.37 vDIa2pb+.net
>>636
>いろんな流儀が存在する場合もありだが、自分の幼稚な流儀をごり押ししなさんなw
それがおまえ
>だから、下記の記法が標準だろ?www
>( 不等号 < で、具体的な すぐ右がどうの、左がどうの は、不要!w )
だから二項関係の定義を書けと言ってるだろ
バカは頭で考えても無駄 手を動かせ
694:132人目の素数さん
22/01/29 15:23:02.41 vDIa2pb+.net
>>636
どこに
>0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ...
が<列って書いてあるんだよw
英語も読めんのか?w バカは英語くらい勉強しろw
695:132人目の素数さん
22/01/29 18:09:12.72 jntxnafb.net
>>616
> ω+1なる列に拡張されている
「ω+1なる列」はω重シングルトンにならないだろ
ω重シングルトンは同様に書けば「ω+0なる列」
696:132人目の素数さん
22/01/29 18:19:28.40 2PdAu/y1.net
つづき
おサルは
>>158より
(引用開始)
<上昇列 0<・・・<ω が有限列にしかなり得ない
(引用終り)
という主張だ
対して、私はそれは無限列であって、下記の”無限降下列”(無限に下る)とは全く違う(無限列で可)って主張なのです(^^
(参考)
URLリンク(ja.wikipedia.org)
二項関係が整礎であるとは、真の無限降下列をもたないことである。
定義
集合あるいはクラス X 上の二項関係 R が整礎であるとは、X の空でない任意の部分集合 S が R に関する極小元を持つことをいう[1]。
X が集合であるとき、従属選択公理(英語版)(これは選択公理よりも真に弱く可算選択公理よりも真に強い)を仮定すれば、同値な定義として、関係が整礎であることを可算無限降下列が存在しないこととして定められる[3]。つまり、X の元の無限列 x0, x1, x2, ... で、どんな n についても xn+1 R xn となるようなものはとれない。
関係 R が X 上で逆整礎 (converse well-founded) または上方整礎 (upwards well-founded) であるとは、R の逆関係 R?1 が X 上の整礎関係であるときにいう。このとき R は昇鎖条件を満たすという。
URLリンク(ja.wikipedia.org)
正則性公理は、別名基礎の公理とも呼ばれ、ZF公理系を構成する公理の一つで、1925年にジョン・フォン・ノイマンによって導入された。
定義
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・∀xについて、無限下降列である x∋ x1∋x2∋ ... は存在しない。
略
(引用終り)
199 名前:132人目の素数さん[] 投稿日:2021/06/17(木) 15:11:56.19 ID:1ixenOss [5/10]
>>191
インデックス集合そのものに性質はない
強いて言えば添字付けたい集合への全射があればいい
今回の場合だと上昇列を考えたいので定義域に順序が入�
697:チている必要もあると思うが、{0, …, ω}には順序数の標準の順序を入れればいい つづく
698:132人目の素数さん
22/01/29 18:20:50.80 2PdAu/y1.net
>>640
誤爆スマン
再投下ww
三歳児のおサルは、いつまでたってもωの理解が進まないなw
過去スレでもコテンパンにやられたのに、学習しないやつらだw
長いが再録するよwww
<過去レス再録>(下記のスレ55の158,574,593とスレ56の104)
Inter-universal geometry と ABC予想 (応援スレ) 55
スレリンク(math板:158番)
158 名前:132人目の素数さん[sage] 投稿日:2021/06/17(木) 09:25:42.97 ID:40Ayiq4a
>>141
猿回し君は、抽象数学を具体的に目で見て理解したいらしいが
残念ながら無理筋なのでキレイサッパリ諦めよう
<上昇列 0<・・・<ω が有限列にしかなり得ない
ことも分からん「考えなしの素人」に数学はムリ
176 名前:132人目の素数さん[] 投稿日:2021/06/17(木) 10:27:00.92 ID:1ixenOss [2/10]
>>172
0<・・・<ω
を見たときに、自分は
a:{0, …, ω}→{0, …, ω}でa(x)=xとなる列を思い浮かべたな
したがってインデックス集合{0, …, ω}が無限集合なので無限列と
179 名前:132人目の素数さん[] 投稿日:2021/06/17(木) 11:25:31.78 ID:1ixenOss [3/10]
>>178
上昇列の定義を確認したかったが見つからなかったので、自分で考えてみたが、
インデックス集合をIとして∀i,j∈I i≦j⇒ai≦ajが成り立つことかと思った
この場合、I={0, …, ω}から任意に2元i,jを取ってくると、i≦j⇒i=ai≦aj=jは自明に成り立つので、
a:{0, …, ω}→{0, …, ω}でa(x)=xとなる列は上昇列になるかなと
188 名前:132人目の素数さん[sage] 投稿日:2021/06/17(木) 13:13:12.50 ID:fmi4nuTk [8/15]
>>179
>上昇列の定義を確認したかったが見つからなかったので、自分で考えてみたが、
それ、多分合っていると思うよ
そもそも、この話は下記の
整礎:真の無限降下列をもたない
正則性公理:∀xについて、無限下降列である x∋ x1∋x2∋ ... は存在しない
の議論に由来している
つづく
699:132人目の素数さん
22/01/29 18:21:41.27 2PdAu/y1.net
>>641
つづき
おサルは
>>158より
(引用開始)
<上昇列 0<・・・<ω が有限列にしかなり得ない
(引用終り)
という主張だ
対して、私はそれは無限列であって、下記の”無限降下列”(無限に下る)とは全く違う(無限列で可)って主張なのです(^^
(参考)
URLリンク(ja.wikipedia.org)
二項関係が整礎であるとは、真の無限降下列をもたないことである。
定義
集合あるいはクラス X 上の二項関係 R が整礎であるとは、X の空でない任意の部分集合 S が R に関する極小元を持つことをいう[1]。
X が集合であるとき、従属選択公理(英語版)(これは選択公理よりも真に弱く可算選択公理よりも真に強い)を仮定すれば、同値な定義として、関係が整礎であることを可算無限降下列が存在しないこととして定められる[3]。つまり、X の元の無限列 x0, x1, x2, ... で、どんな n についても xn+1 R xn となるようなものはとれない。
関係 R が X 上で逆整礎 (converse well-founded) または上方整礎 (upwards well-founded) であるとは、R の逆関係 R?1 が X 上の整礎関係であるときにいう。このとき R は昇鎖条件を満たすという。
URLリンク(ja.wikipedia.org)
正則性公理は、別名基礎の公理とも呼ばれ、ZF公理系を構成する公理の一つで、1925年にジョン・フォン・ノイマンによって導入された。
定義
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・∀xについて、無限下降列である x∋ x1∋x2∋ ... は存在しない。
略
(引用終り)
199 名前:132人目の素数さん[] 投稿日:2021/06/17(木) 15:11:56.19 ID:1ixenOss [5/10]
>>191
インデックス集合そのものに性質はない
強いて言えば添字付けたい集合への全射があればいい
今回の場合だと上昇列を考えたいので定義域に順序が入っている必要もあると思うが、{0, …, ω}には順序数の標準の順序を入れればいい
つづく
700:132人目の素数さん
22/01/29 18:22:02.89 2PdAu/y1.net
>>642
つづき
243 名前:132人目の素数さん[] 投稿日:2021/06/17(木) 18:31:53.16 ID:KCAxlwiy [1/3]
>>222
改めて整理すると、
a:{0, …, ω}→{0, …, ω}でa(x)=xとなる関数を考える
aの定義域はインデックス集合であり、aは列である
列をa、インデックス集合をIとして∀i,j∈I i≦j⇒ai≦ajが成り立つとき、aは真の上昇列や<上昇列であると呼ぶ
I={0, …, ω}とすると∀i,j∈I i < j ⇒ i = ai < aj = jが成り立つので、aは真の上昇列であり、インデックス集合が無限なので無限列でもある
論理的にどこが、そして何が誤っているかを知りたい
401 名前:132人目の素数さん[] 投稿日:2021/06/19(土) 12:25:32.47 ID:jEvz9hTC [1/5]
>>395
ω+1={1,2,3,...,ω}が最大値を持つ超限順序数であることと、無限降下列を持たないことごっちゃになってるな
中途半端に基礎論勉強したって感じなのかな
574 名前:132人目の素数さん[sage] 投稿日:2021/06/20(日) 17:27:33.12 ID:aiCb8/PE [59/66]
>>570
>順序数は上昇列じゃないんだ。
>じゃあωも上昇列でないてことでok?
ああ、そうだよ
そもそもID:jA2rtNGF君は、なんでωが上昇列だと思うんだい?
ちゃんと答えてごらん センセイ、怒らないからw
593 名前:132人目の素数さん[sage] 投稿日:2021/06/20(日) 18:16:19.00 ID:aiCb8/PE [66/66]
>>589
>ω={0,1,2,...}が上昇列じゃないって言ったのは何なのさ
0<1<2<・・・が上昇列でない、といつどこで誰がいいました?
幻聴でしょうw
いわれているのは以下
「0<1<2…<ωは、無限上昇列ではない」
ニホンゴ、ワカリマスカ?w
968 名前:132人目の素数さん[] 投稿日:2021/06/27(日) 21:24:36.76 ID:2cYyqlhC
>>946
>>574の�
701:N「ωは上昇列ではない」 >>593の君「ωは上昇列である」 あのもう議論としてあなたは詰んでしまってるんで てか一週間経って俺がいなくなってそうな状態を見計らっての、突然の勝利宣言は流石に笑える どんだけ悔しかったんだ (引用終り) 以上
702:132人目の素数さん
22/01/29 18:36:24.90 2PdAu/y1.net
>>639
>> ω+1なる列に拡張されている
>「ω+1なる列」はω重シングルトンにならないだろ
>ω重シングルトンは同様に書けば「ω+0なる列」
ああ、そうだね
ω重シングルトンの話は別
空集合Φを元とするシングルトン{Φ}を、1重とする
<なお、カッコには添え字をつける。カッコが有限なら添え字の有無は同じ意味です>
1重 {Φ}1
2重 {{Φ}1}2
・
・
n重 {・・{{Φ}1}2・・}n
・
・
ω重 {・・{・・{{Φ}1}2・・}n・・}ω
となる
つまり、1重,2重,・・,n重,・・とすべての自然数を尽くしたのち、ω重になる
カッコの添え字もそれに対応する
つまり、例えば 右カッコで }1}2・・}n・・とすべての自然数を尽くしたのち、ω重の}ωに至る
(左カッコも同様)
703:132人目の素数さん
22/01/29 19:16:05.11 ENybOWPw.net
>>644
> n重 {・・{{Φ}1}2・・}n
> ・
> ・
> ω重 {・・{・・{{Φ}1}2・・}n・・}ω
> ω重 {・・{・・{{Φ}1}2・・}n・・}ω
はω+1重だから
> ω重の}ω
ω重じゃないだろ
704:132人目の素数さん
22/01/29 19:59:37.87 vDIa2pb+.net
>>644
>ω重 {・・{・・{{Φ}1}2・・}n・・}ω
・・{・・{{Φ}1}2・・}n・・は集合?
YESならその元は何?
705:132人目の素数さん
22/01/29 20:24:48.49 p4T8SQRN.net
以上、キチガイの独り言
706:132人目の素数さん
22/01/29 23:31:14.45 2PdAu/y1.net
>>645
有限n重 {・・{{Φ}1}2・・}n
を認めるならば
ω重 {・・{・・{{Φ}1}2・・}n・・}ω
で合うだろ?
これは定義です
>>656
>>ω重 {・・{・・{{Φ}1}2・・}n・・}ω
>・・{・・{{Φ}1}2・・}n・・は集合?
>YESならその元は何?
そういう突っ込みなら、urelement と考えて納得してもらえれば、それで結構だ
URLリンク(en.wikipedia.org)
Urelement
}1}2・・}n・・ は、一つの状態です
1,2,・・,n,・・ と同じです
箱が可算無限個あるとする
□1,□2,・・,□n,・・ となる。添え字1,2,・・,n,・・は、全ての自然数を尽くす
707:132人目の素数さん
22/01/29 23:33:35.54 vDIa2pb+.net
>>648
>urelement と考えて納得してもらえれば、それで結構だ
つまり
>ω重 {・・{・・{{Φ}1}2・・}n・・}ω
なるものはZF上には存在しないと?
708:132人目の素数さん
22/01/30 06:26:43.75 17tiKPMs.net
>>648
> 有限n重 {・・{{Φ}1}2・・}n
> を認めるならば
>
> ω重 {・・{・・{{Φ}1}2・・}n・・}ω
> で合うだろ?
> これは定義です
> ω重 {・・{・・{{Φ}1}2・・}n・・}ω
> で合うだろ?
合わない
最小の有限順序数がΦ
Φ重は「ゼロ重」
最小の超限順序数がω
ω重は可算無限以上に限定した場合の「ゼロ重」
> ω重 {・・{・・{{Φ}1}2・・}n・・}ω
は可算無限以上の{}ωが1つあるのでω重とはならない
709:132人目の素数さん
22/01/30 07:54:49.27 .net
>>640
>お●●は
><上昇列 0<・・・<ω が有限列にしかなり得ない
>という主張だ
>対して、私は
>それは無限(上昇)列であって、
>”無限降下列”(無限に下る)とは全く違う
>って主張なのです(^^
まさに食言、歴史の改竄
そもそも
「0<1<2<・・・ω
という無限上昇列があるから
それをそのままひっくり返せば
無限降下列になる!」
と🐎🦌丸出しな発言をしたのは
中卒🗾🐒 貴様だ
それに対して私が
「上記の列にはωの直前の項がない
したがって
0<1<2<・・・<x<ω
とはならないからひっくり返しても
無限降下列とはならない
ひっくり返して降下列となる上昇列
0<1<2<・・・<x<ω
は有限列となる な・ぜ・な・ら、
xに入るのは自然数nに限られるから」
と完璧に論破して🗾🐒を焼き尽くした
貴様はすでに我々に食われて🦴になってしまったのだよ
🗾🐒よ、安らかに眠れ R.I.P
710:132人目の素数さん
22/01/30 08:03:15.41 .net
>>641
>三歳児のお●●は、いつまでたってもωの理解が進まないなw
>過去スレでもコテンパンにやられたのに、学習しないやつらだw
>長いが再録するよwww
無意味w
>176 名前:132人目の素数さん[]
>投稿日:2021/06/17(木) 10:27:00.92 ID:1ixenOss [2/10]
>0<・・・<ω
>を見たときに、自分は
>a:{0, …, ω}→{0, …, ω}でa(x)=xとなる列
>を思い浮かべたな
これが間違い
なぜなら、そのような列は
0<・・・ω
とは書けても
0<・・・<ω
とは書けない
<ωの左の項が存在しないから
>179 名前:132人目の素数さん[]
>投稿日:2021/06/17(木) 11:25:31.78 ID:1ixenOss [3/10]
>上昇列の定義を確認したかったが見つからなかったので、自分で考えてみたが、
>インデックス集合をIとして∀i,j∈I i≦j⇒ai≦ajが成り立つことかと思った
これも間違い
なぜなら、そのような定義で�