22/03/31 14:25:35.05 RyhsBaxO.net
石田信著『代数学入門』
「
しかし、 R が単位元をもつ環であっても、部分環 S は必ずしも単位元をもつとはかぎらない(例3参照)。
また部分環 S が単位元(≠ 0)をもっていても、それが R の単位元であるとはかぎらない(問5)。
」
この注意は必要ですよね。
松坂和夫著『代数系入門』では、単位元をもつ環のことを環と定義しています。
『代数系入門』での群 G の部分群の定義は、それ自身群になるような G の部分集合というものです。
部分環は、それ自身環になるような R の部分集合のこととは定義していません。
部分環とは、それ自身環になるような R の部分集合で、 R の単位元を含むものという定義です。
この定義は、
「また部分環 S が単位元(≠ 0)をもっていても、それが R の単位元であるとはかぎらない(問5)。」
↑のような S を部分環から排除したいためだと思いますが、このような例について『代数系入門』には記述がありません。
松坂和夫さんは一体何を考えていたのしょうか?
このような例は必ず書かなければならないものだと思います。